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ABSTRACT

Artificial neural networks have demonstrated remarkable utility across various domains; how-
ever, their training often demands significant computational resources. The Lottery Ticket
Hypothesis suggests that within every fully connected neural network, there exists a smaller
subnetwork that can be trained from scratch to achieve similar performance. This thesis builds
on recent work related to the Strong Lottery Ticket Hypothesis (SLTH), an even stronger con-
jecture, which states that sufficiently overparameterized randomly initialized neural networks
contain sparse subnetworks that will perform as well as a small trained network on a given
dataset—without any training. This has motivated a considerable amount of research trying
to prove that a given smaller network can be approximated by pruning a larger network. While
previous studies have tried to answer how large a network needs to be to approximate a given
target network through pruning, we go further by investigating both the required network size
and the precision of its weights. We assume a target network of a given size, whose weights
are represented with a certain precision, and a large a network whose weights are represented
with more precision than the target, and explore the relationship that must hold between size
and precision of the large network, that must hold in order for the larger network to represent
the target network. In one of our results, the required network size is almost exact, mostly free
of any arbitrary constants unlike other pervious works. Additionally, we show that the upper
bound on the parameter count required to approximate a given network matches the lower
bound asymptotically for a one layered network by parameter counting argument, hinting at

the optimality of the solution.
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Chapter 1

INTRODUCTION

Artificial Neural networks have been extremely successful across various domains in the past
few decades. A large part of this success has been the increase in computational power and
development of efficient training algorithms. This has allowed training of deeper networks,
which capture the hidden patterns in a huge corpus of data. However, as the field advances,
people plan to train even bigger networks, and hence finding efficient algorithms for training
and inference remains an active area of research. Neural networks are highly over parametrized
functions. During training, these parameters are adjusted such that the network captures
patterns in data, so that it can generalize to data that it has not seen before. One of the
compression techniques, known as pruning, involves setting parameters of the network, which
are small in magnitude to zero. It has been observed that sometimes, even more than 95% of
the parameters can be set to zero without any significant drop in performance. But if one tries
to do the reverse, i.e., train a sparse network, it does not works well. Hence it was a big surprise
to the community when [FC18] published a conjecture known as the lottery ticket hypothesis,
which states that every dense network contains a sparse subnetwork that can be trained from
scratch, and performs equally well as the dense network. They also gave experimental validation
to their claim. Further works by [Zho+19|, [Ram-+19], [DK21| and [Wan+19] motivated an
even stronger version of this hypothesis, called the Strong Lottery Ticket Hypothesis (SLTH).
SLTH states that a sufficiently large neural network contains a subnetwork that will perform
well on a dataset without any training. The strong lottery ticket was proved by [Mal+20]. They
also provided bounds on how large this network should be to approximate the performance of

a network of a given size. These bounds were later improved by [Pen+20|, [Bur22|. These
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results rely on reducing the problem to a bunch of Random Subset Sum (RSS) problems and
using results on the RSS problem [Lue98| to obtain bounds on the size of the large network.
All the previous theoretical works in the SLTH space assume a large network whose weights are
randomly initialized, sampled from some continuous interval. Then they try to prune this
network in certain ways to approximates a given target network. Our thesis develops on these
works. Our analysis heavily relies on the theory of Number Partitioning Problem (NPP). One
of the striking features of NPP is that it has a phase transition [Mer98|, [BCPO1]. Through

this thesis, we show how these results on NPP can serve as powerful tools to study SLTH.

1.1 Our Contribution

In this work, we add a new dimension to the strong lottery ticket problem-Weight Quan-
tization. We assume a target network whose weights are sampled from a discrete set like
Ss, = {—1,...,01,201,...,1}, where § = 107* for some k; € N and a large network whose
weights are sampled from say Ss, = {—1,...,02,20,...,1}, where § = 107" with ky > k.
The number §; defines the precision of the network. The larger network can be quantized,
i.e., the precision of it’s weights can be decreased (by removing less significant digits from
after the decimal place: 0.4326 — 0.43, for example) and it can then be pruned. We then
ask what relationship must hold between the precision size of the large network such that it
can be pruned the given target with high probability. This is more realistic, as computers
always represent numbers with finite precision. Moreover, quantization is another method of
compressing neural networks, which involves decreasing the precision with which the weights
are represented. It has been observed that one can quantize a neural network to a great ex-
tent without loosing much performance. We further assume that after certain operation, the
precision is set to § again. For example, in a network, we may assume that output from any
neuron of each odd layer is of precision §. This may happen at different stages in the target
and the large network, and may vary from result to result. This assumption was made for
theoretical simplicity and we leave it to the future work to deal with a more general case. We
adapt constructions from [Pen+20| and [Bur22| but starting in a quantized setting, we reduce
the problem to solving a bunch of Number Partitioning Problem (NPP), which is an equivalent
problem to RSS. NPP is one of the most important problems in the theory of NP-completeness
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and is known to exhibit a Phase transition [BCPO1]. Using known results on NPP, it is easier
to deal with quantized system. Instead of approximating the network output within an error
€, we go for exact representation, and generalizing our results to account for errors is another

challenge for future works. Informal statements of these results is given.

Theorem (Informal version of Th. 6). A randomly initialized neural network of precision 0o,
width O (d log, <é>> and depth 2l of can be pruned to any network, with less precision, of
width d and depth [ with high probability.

Theorem (Informal version of Th. 7). A randomly initialized neural network with width
2d log, (é) (except 1st layer whose width is O (d log, (%))) and depth l+1 can be pruned to
any network, with less precision, of width d and depth | with high probability.

In the latter of these results, note that the required network size of the large network is exact
except for it’s first layer, free of any undetermined constants unlike other pervious works. We
also provide lower bounds on the required parameter count of a network to represent a two
layered network. We do this by a parameter counting argument similar of [Pen-+20], but in

quantized setting. The informal statement is given below.

Theorem (Informal version of Th. 8). There exists a 2 layered network with d* parameters,

which cannot be represented by a large neural network of precision do with high probability unless

it has 2 <d2 log, (%)) parameters.

Note that the upper and lower bounds match asymptotically, indicating the bounds are optimal

in some sense. In summary, our contribution is 3-folds:

e We provide the relationship must hold between the precision and the size of the large

network such that it can be pruned to the given target network with high probability.

e In one of the results, the required size of the large network is exact, free of undetermined

constants, except for the first layer.

e Upper and lower bounds on the required size to represent a network match asymptotically,

indicating the bounds are optimal in some sense.



Chapter 2

NEURAL NETWORKS

2.1 What are Neural Networks?

Modern machine learning focuses on developing systems that learn from data by developing
generative, predictive, or classification models through the analysis of complex patterns in
data. In real world tasks, manually encoding intricate patterns is often infeasible. Modern
machine learning addresses this challenge by leveraging highly overparameterized models that
learn through loss optimization over given datasets. Machine learning has diverse applications
across numerous fields, with notable examples including machine translation, large language
models, speech recognition, and image generation. Much of its success stems from a subfield
known as deep learning. Emerging in the 1980s, deep learning involves models that distribute
computation across multiple layers to capture underlying complicated patterns in data. Neural
networks were among the first examples of such learning systems, laying the foundation for
many modern advancements in the field. neural networks by inspired by biological neural
networks in animal brains both on terms of structure and function. In this chapter we describe
what neural networks are and how they work. In this section we describe the construction of
neural networks and in the next section we describe Backpropagation, an efficient algorithm
to train neural networks. To construct neural networks we first describe a "neuron", which is

the fundamental unit of a neural network. Neurons are functions f : R — R of the form

f(z1,29,..,2,) =0 (Z wixz) , (2.1)

10
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Figure 2.1: Pictorial representation of a neuron.

where 0 : R — R is known as the non-linear activation function. A neuron is pictorially
represented in Figure 2.1. A neuron essentially takes a linear combination of it’s n inputs,
weighted by w;’s, and then gives the linear combination as an argument to the non linear
activation function o to obtain it’s output. The parameters w;’s are known as weights. It is
usual to think of these numbers w;’s as numbers associated to the connections (the lines that
bring the inputs to the neuron shown in Figure 2.1). We will be using phrases like "weight
of the connection" for w;’s frequently. The commonly used non-linear activation functions are

the sigmoid function defined as
1

o(x) = =
The sigmoid function is plotted in Figure 2.2. As shown in the plot, the sigmoid function
compresses its input into the interval [0,1]. It is a monotonically increasing function that
approaches 1 as the input becomes very large. Other common choices are o(x) = tanh(x) and

o(xz) = ReLU(z) = max{0,x} are also shown in Figure 2.2. Our model neuron is somewhat

Sigmoid Activation Function Tanh Activation Function ReLU Activation Function

1.04 — sigmoid 1.00{ — Tanh 51 — RelU

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Figure 2.2: Sigmoid, Tanh, and ReLLU activation functions.

similar in structure and function to a biological neuron. A biological neuron aggregates signals
from other neurons through various connections, each with a strength that can change over
time through complex bio-mechanisms. These strengths determine which signals are more

important. If the aggregate input exceeds a certain threshold, the neuron "fires," transmitting

11
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signals to other neurons. Similarly, our artificial neuron weights incoming signals using w;’s
and produces an output based on an increasing function of the aggregate input. Later, we
will allow the w;’s to change during a process called training, enabling the neuron to capture
meaningful patterns in the data. Having defined a neuron and motivating it’s structure, we
now construct a network of these neurons, called the feed forward neural network. We stack

these neurons in layer and connect them together as shown in Figure 2.3. The neurons in the

Input Layer Output Layer

Hidden Layer

Figure 2.3: A feed-forward neural network.

Input layer take real number inputs and pass them without any change to the neurons in the
next layer. A neuron only gives one real number as an output, multiple outputs shown in the
figure mean that the neuron a giving the same output to all the neurons in the next layer.
The neurons in the next layer, all reviving dy inputs, where dy is the number of neurons in
the input layer, operate according to the rule given in equation 2.1. The neurons then pass
outputs to the next layer, and the computation goes on. There can be as many hidden layers
in between input and output layers as required. The signal finally reaches the output layer,
giving d, real numbers, (where ¢ is the total number of layers and d, is the number of neurons
in the output layer) which is the output of the network. Note that layers are numbered as
(0,1, ...,¢). Hence, a neural network defines a function from R% — R parametrized by the
weights of all the neurons. We represent the input € R% as @ = (1, 29, ...74,). The operation
performed between the zeroth layer and the first layer can be represented by Wi, where W
is the matrix whose ;" entry is the weight of connection connecting the ;'™ neuron in the
zeroth layer and i*® neuron in the first layer. Using this compact notation, a neural network

can be defined as

12
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Definition 1. An neural network is a function f : R% — R% defined as
f(X) = WlO’(W[,l...O'(W1X)>, (22)

where W; has dimension d; X d;_1, x € R, and o : R — R is the nonlinear activation function

and v = o(x) means v; = o(x;).

Having defined the neural network, we now come to the question of what to do with it. Con-
sider some high dimensional data {(x;,y;)}Y, where ; € R% and y; € R%. Suppose we
empirically want to determine the relationship between x; and y;. A neural network is a
highly parametrized function f : R% — R%. In that case we would like to figure out the set
of weights of the neural network such that it best represents the relationship between a; and
y;. Here one can also see the significance of non linear activation functions. In the absence of
an activation function, the neural network is just a composition of linear functions and hence
is a linear function it self. So it can fit only linear function. Adding a non linearity to the
design makes it much more powerful. By adding a non linear activation function, the class of
functions the neural network can represents increases drastically. Infact it can be shown that
a neural network can represent any continuous function, with minimal requirements on what
activation function you choose. Given {(z;,y;)}¥,, one of the natural things to do is to find
the set of weights such that .

0= gy L) )’ (2.3
is minimum. C' is known as the cost, or the loss function. The specific form in Equation 2.3 is
known as the least square loss. This form is a choice, and many other choices of loss functions
exist. Given {(x;,y;)}¥Y,, C is a function of all the weights of the network and we seek to
minimize C' over all possible values of the weights. This is a high dimensional optimization
problem can can be quite challenging in general. The process of minimize C' over all possible

values of the weights is known as training in the language of machine learning.

13
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2.2 The Backpropagation Algorithm

In this section we discuss an efficient gradient based algorithm to train a neural network. A

neural network of the form given in Equation 2.2 will be used. The weight connecting the *®
th th th : k

neuron of the &* layer and j** neuron of (K — 1)™ layer will be denoted by wy;;. The output

given by the i*" neuron of the k'™ layer will be denoted by a¥. Hence we have

af =0 (Z wfja§1> .
J
We will also denote the input received by the i*" neuron of the k" layer by

k_ k—1
z; = E wia;
J

Let C be the cost function of the network. C' need not be of the form 2.3, but we will assume
that the cost function can be written as an average of the costs of individual training samples,
ie, C = %Ez C,. Hence we will compute gradient of C' with respect to a single training
example and it can then easily be generalized to the entire dataset. We will also assume
that C can be written as a function of the outputs from the neural network. Let the dataset

{(zs,y:)}, be given. We define the error in the i*® neuron of the k™ layer &F as

oC
k __
0 = 0zk"

(2

Fist we compute the error of the output layer 6%, where L denotes the last layer. We have

L 00 &~ 0C dat

k= 5. L — L 7. L
Oz = Oai dzy
where n is the number of neurons in the last layer. The above equation gives

ac |
(SL = WJ (ZL). (24)
k

14
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Next we compute the error in the £ in terms of (¢ + 1)™ layer. Let the number of neurons in

the (¢ + 1)™ be m. Consider

¢ _ 9C
k_(?zf;

J

1 A0
— Dz, 0z,

= = 6wl (). (2.5)
i=1
Now we compute aicg . We have
ik
oc 8_(] 0z,
wt, Oz dwhy
oC ¢ 01

Equations 2.4, 2.5 and 2.6 are called the equations of Backpropagation. Now our goal is to
minimize C' with respect to wfj for the given dataset, and hence we want to find it’s gradient.
The gradient is calculated using the equations of Backpropagation. Note that the partial
derivative of C' with respect to wfj is computed layer by layer, starting from the last layer,
and hence the name backpropagation. Having calculated VC, we can change wfj by simply
taking small steps in the direction negative gradient, also known as gradient descent. The
algorithm goes as follows - First the entire dataset is given as input to the network and the

cost is calculated. Then using the equations of backpropagation, the gradient of C

ac
ow?,
VC =
ac
oWy,
is calculated. The weights are the updated as
oC
k k
W = Wi — N=—r
T gk

or in other words, if w denotes vector containing all the weights as elements, then

w—w—nVC. (2.7)

15
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This process is repeated until convergence, and one round is known as an epoch. Instead

Label: 3 Label: 2 Label: 9 Label: 9 Label: 6

Jl12191916

Label: 4

Figure 2.4: MNIST dataset contains of 60,000 training and 10,000 test samples. We used a batch
size of 64 for training.

of calculating the loss over the entire dataset, one can also divide the dataset into batches,
compute the loss for a batch, update the weights according to 2.7, and then move on to the
next batch. This is known as stochastic gradient descent and is usually preferred over gradient
descent for practical purposes. Figure 2.4 shows some samples from the MNIST dataset, a
collection of images of handwritten images. A neural network was trained to recognize the
digits. A fraction of dataset was kept separately and not used for training for testing the
performance on previously unseen examples. Figure 2.5 shows the training and test losses as

a function of epoch. This shows that neural networks have the capability to capture patterns

Training and Test Loss over Epochs

—— Train Loss
0.40 4 —— Test Loss

Loss

Epoch

Figure 2.5: A neural network with dimensions 784 x 128 x 64 x 10 trained on MNIST.

and generalize to previously unseen data.

16



Chapter 3

THE NUMBER PARTITIONING PROBLEM

3.1 Introduction

Many problems in combinatorics are known to exhibit a phase transition. A combinatorial
phase transition is an abrupt change in the qualitative behavior of the problem as an appropri-
ately defined parameter is varied. Well known examples are Erdos and Renyi graphs, k-SAT
problem, etc. In this chapter we discuss phase transition in the Number Partitioning Problem
(NPP). The problems is to partition n integers uniformly sampled from {1,2,..., M} into two
subsets such that the absolute value of the difference of their sums, is minimized. NPP is one
of Garey and Johnson’s six basic NP-complete problems that lie at the heart of the theory
of NP-completeness, [GJ79]. In the early 1990s, there was a debate weather there is a phase
transition in NPP or not. Fu modeled the problem as an infinite range Ising spin glass with
Mattis-like, antiferromagnetic couplings [Ste89]. He argued that there won’t be any phase
transition. Then, is was found empirically that there is a phase transition in NPP. The control

parameter
logy, M

n

K =

was proposed and it was shown empirically that if k < k., then O(2") number of solutions
exist, whereas if k > k., the number of solutions drop to zero. [Mer98|, using the tools from
statistical mechanics showed (informally) that there is a phase transition in NPP with £ = 1.
Though informal, Mertens analysis was quite convincing that there is a phase transition in

NPP. The fact that there is a phase transition, along with many other results on NPP were

17
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proven by [BCPO01] formally. These results are central to this thesis, and hence we shall go
through both Mertens and Borgs analysis of the NPP in detail in this chapter.

3.2 NPP by Statistical Mechanics

Consider the set of integers { X1, Xo, ..., , X,,} where Xj is sampled uniformly from {1,2, ..., M}.

Since we wish to solve NPP, it is natural to consider a system with Hamiltonian

,H:

n
E Xio;
i=1

where 0; € {—1,1}.

3.2.1 Calculation of the Partition function

We have the Hamiltonian

,H:

n
E Xiai .
=1

The Canonical partition function (with § = %) is given by

Z = Z e PR

oie{-1,1}

— 7 = Z exp (—ﬁ iXiO'Z‘>
o;e{-1,1} =1

— = Z /dee'“'d(z—ﬁi)(}a).

oie{-1,1} "

Now Fourier expanding the delta function

/ dx ™ = 2710(k)

—00

0o ® d7 n
— /= g / dz e~ 1! / Q—Iexp <z§: <:c —p E Xial->>
00 —o0 4T i=1

o, e{-1,1} v

18
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- 2 / d‘r/ 5 X (-%MZXU) o—lol iz

oie{-1,1} v~

dz u -
_ - -~ . —lz|+izz
— 7= /_OO dx /_OO o E exp( iz ;:1 Xlaz> e . (3.2a)

SiG{—l,l}
Now we simplify the term

i=1

oie{-1,1}

Z H exp (—izfX,0;) .

oie{~1,1} i=1

Now expand the o; summation and use 2 cos(f) = % + e~

=2V ﬁ cos (BX;T) . (3.2b)

Now we simplify the term

o0

dz e

—00
00
/ dr ex-{—za}a} / dr e—x—i—izi
0
0o
/ dl’ ex-{—z:ca; ‘l‘/ dil? e—x—i—zmc
—00 0

ex-+izz 0 e—rtizE 7
- [1—1—2’92}00—’_ {—1+¢:EL
—1 1
1+ + —1 4z
1 1 2

_ _ _ _ 3.2
iZ—1 ii+1 2+1 (3.2)

—|z|+izE

—

Now put 3.2a and 3.2b in 3.2¢ we get

2
7 = _2" (BX;x
/_ HCOS BXiT) o]
1

z=2[ ] X,7
= /_Oo -1 cos (S X;7)

72+ 1

19
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Put 7 = tan(y) = di = sec?(y) dy,

o [ e (y) dy T 1
Z =2 /_72r - gcos (BX; tan(y)) (1)
— Z=2" /2 d—:ﬁcos (BX; tan(y)) . (3.2d)

Now let
1 n
= — | Xt )
G(y) n; n cos(BX; tan(y))

Hence equation 3.2d becomes
Z = 2"/2 Y ) (3.2¢)

™

Now we employ saddle point approximation to calculate the partition function Z. Computing

the saddle points of G(y):

G(y) = %Zln cos(fX; tan(y))

n

d 1 sin(SX; tan
3 (8 (y))

— @G(y) = _E COS(/BXi tan(y))

d n
— @G(y) = —% izltan(ﬂXi tan(y)) BX;sec?(y).

BX; sec’(y)

i=1

Note that G(y) is zero if y = arctan(3)k for any k € Z. From now on, we consider a;’s, instead
of just being integers, to be an integral multiple of some real number Aa. If a; € 7Z, then

Aa = 1. In that case, G(y) is zero if:

(e

BAa

yr = arctan ( k‘) VEkeZ.

Now let’s compute the second derivative of G(y):

dd—yQG(y) = —% Z[SGCQ(ﬁXi tan(y)) (Ba;sec?(y))? + tan(BX; tan(y)) 28X, sec?(y) tan(y)]

i=1
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i) = -3 (5, sect (aretan (1) ) )
— e <y"f)__52(ﬁ ; sec (arc an(m )))

=1
P 1< N2\ )
- d_y2G<yk‘) - ; (ﬂXz‘ (1 + (@) ))

Note that we need to find the minima of —NG(y), which corresponds to the maxima of G(y).
G"(y) is negative at yi, confirming that they are the maxima. Now we compute the partition

function by applying saddle point approximation on 3.2e.

=3

where 1o is a maxima. We know that at maxima, G(yo) = G'(y0) = 0. Hence

[SIE]

% exp (n G(yo) + N G'(yo)(y — yo) + gG”(?JO)(y - 90)2) )

(VB

w [*dy n
Z=2/ ?exp(—§|G”(yo>||y—yo|2>7

s
2

Now do this for every maxima and extend the domain to (—oo,00) as yx = arctan (”—k> €

BAa
(-53)

z=2% [ Lo (<516 @l Iy - ui?)

keZ ¥~
:Z:zz 2T

T ez n% Z?:l (BXZ (1 + (%>2>)2

= Z = ZH@Z 1 )
keZ \/2?1 <5Xi <1 + (ﬁ%) ))

:>Z_2”\/§Z L

"t von s (1 ()

2 (8a)?
= TN AT X & B (B + )
. g _on 2Aa? (BAa)

Ty o Xi — (BAa)? + m2k2
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Now using the Identity

T
Z m = COth([E)

neL

we get

2Aa?
Z = 2", | ——= coth(SAa).
\/ sz XJZ

Calculation of Average Energy and Entropy

The free energy of the system is given by

F:—%M@

= F:—lln (2"

2Aa?

p w3 X7

The average energy (FE) is given by

coth(ﬁAa)) :

on [-28e® (coth?(BAa) — 1
e (B) = Aa VTS xp (ot (68) ~

2n QA‘IQ coth(BAa)

T X7
coth?(BAa) — 1

— (E)=Ba coth(fAa)

The entropy can be calculated as

F=(E)-TS

— S=p(E)-F)

B coth’(BAa) —1 1 . | 2Aa?
—= S=0 (Aa coth(3Aa) + 3 In <2 Wcoth(ﬁAa)))

coth?(BAa) — 1 1
— S =BA In2
S =pAa coth(BAa) Tnined g Z X2
1 2Aa? =
== S = nln2—|— = X2 + S(BAa).

22
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CHAPTER 3. THE NUMBER PARTITIONING PROBLEM

Here S (BAa) is the Temperature-dependent part of the entropy. Now we define

(n) = 1 — In(%n) o In (2515, X7)
¢ 2n1n?2’ 2n1n 2 '

Hence the entropy can be written as

S =nln2(k — k) + S(fAa).

3.2.2 Phase transition

For k < k., and at T" = 0, entropy is extensive, and the corresponding energy is zero, hence an
exponential number of partitions are expected to exist.

For k. > Kk, we notice that N In2(k — k) is negative. But Entropy cannot be smaller than In 2
for our discrete system, hence the temperature-dependent part S (BAa) must contribute. Also
notice that k. > x implies

B In(%n) - In (AiaQ% > XZZ)
2nln2 2n1n 2

—2nln2—1In (gn> > In (Aia?% ZX?)

T 1
—2nn2>n|=-—) X?
nln >n<2Aa2Z 1>

)
7

/ 2
= 27" > Aay | ————.
“ T Z‘Xi2

Or in other words, Aa = O(27"). Now we shall see that in this regime contribution from

S(BAa) cannot be neglected. Consider the expansion of S(3Aa)

S(BAa) = In <&> + 14+ 0O((BAa)?).

To deal with this contribution, we introduce an effective zero temperature 7Ty, beyond which

the system cannot be cooled. We can estimate this effective zero from minimum entropy

S =nln2(k — k) + S(BAa) = In2
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1
— In2~nln2(k — k. +1In (ﬁoAa)

— Ty =2 Aa 2"

— Ty=2" [21) X2

For k > k., the approximate energy

Ey=Ty=2" |27 X2

Which is finite, and hence we expect the number of perfect partitions to drop to zero, hence
we have a phase transition. Note that as n — oo, k. — 1. This analysis, although not formal,
is considered one of the major significant developments in the theory of NPP. It was the first

to convincingly argue that there is a phase transition in NPP. Now we move in to analysis by

[BCPO1], which formalized these ideas.

3.3 Number Partitioning Problem: Formal Results

In this section, we describe the formal analysis of Phase transition in NPP by [BCP01]. We

start with some definitions and then we state the relevant results.

Definition 2. Let X = (X;, Xs,..., X,,) be a set of integers sampled uniformly from the set
{1,2,3,...,M}. P, is the probability measure induced by random variables X. The Number
Partitioning Problem is defined as the problem of finding a partitioning set o = (01,03, ...,0,)

with 0 € {—1,1} such that |o - x| = { for some given integer { (called target).

For a given instance of Number Partitioning Problem, the event that Y | X; is even” will be

denoted by &,,, where as the event that the sum is odd will be denoted by 0,,.

Definition 3. Let d,, denote the optimum (minimum) discrepancy of X over all o:
d, = dp(X) = min (|- X —{]).

A partition is called perfect if d,, < 1.
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It is clear that if Y " | X; and ¢ are of same parity (both even or both odd), then a partition

is perfect if d,, = 0 otherwise a partition is perfect if d,, = 1.

Definition 4. For a number partitioning problem with n integers sampled from {1,2,..., M},

Ky 1S defined as
log, M
Kn = :
n

We will also we using a more detailed parametrization log, M = k,n with

log, 1 N An

Kp=1— (3.1)

2n n’

Definition 5. Given an instance of Number Partitioning Problem X = (X1, Xy, ..., X,,) with

a set of size n and a target {, Z,, denotes the number of exact solutions to the NPP, i.e.,

Zne=Y o X|=20).

o

3.3.1 Statement of the Results

Theorem 1. Let log, M = k,n, and assume the there exists lim, oo k, = Kk € [0,00). Then

1 ifr<l
lim P, (3 a perfect partition) =
n—oo

0 of k<.

Theorem 2. Let Cy > 0 be a finite constant, let M = M(n) be an arbitrary function of n, let

1
= MA/2mney

where
c —E X_2 —1+L+L
M= \m2) 3 T am e

and let ¢ and {' be integers. Then,

EMA=%(prE£%E)+mwﬂ)
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Furthermore

€2 + (6/)2 1 1
_ 2 - 7 —
B[l elne] = 27, (eXp ( 2nM26M) O (n) o (mﬂ"))

+ ;—Z (0100 + de—r0) €XP <—

02 4 (0)?
ZHMQCM
if € and ' are of the same parity, i.e., both odd or both even, while E[I, I, ¢] =0 if £ and '

are of different parity.

3.3.2 Integral representation and moment estimates

In this section we prove Theorem 2. Estimates of moments of the integral representation of
Zn are the key ingredients in the proving the main results. Z,, (the number of partitions

with |o - X| = ¢) can be written as
Znie=Y Io-X|=1)

where I is defined as

1 ["
[(lo-X =/)= 2—/ el X=0e gy
m

—T

and the sum is over all possible configurations of o. This gives

1ifl=0
Zn’g = 2”[,175 X

2 ifl0 >0
where I, = I,, /(X) is the random integral given by

I -
L= ) cos(ﬁx)gcos(ij)dx . (32)

Proof of Theorem 2. Let M be bounded. We first use Equation 3.2, independence of the Xj,

and the Fubini theorem to get

E(L.) = % /_ " cos(0x) f () da (3.3)
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and
E(In,fln,@) = (2%)2 / /xl’ R COS(EI) COS(E/x)fn(l’l, Ig)dl’ldl’g
where y o
1 1 i + 5 1
j=1
and

f(x1, 22) = E(cos(z1X) cos(x2 X)) = %(f(xl + x9) + f(z1 — x2)).

(3.4)

We now need to estimate the above integrals to get the required moment estimates. We use

saddle point technique A to estimate the integrals as we care about the limit n — oco. It is

important to note that there is an M in the denominator of both the integrands which can

grow with n, however, [BCP01| showed by a careful treatment of error terms that one gets the

same result. We only consider the case when M is bounded, as the general case is beyond the

scope of this thesis. We start by estimating the first moment 3.3. We have

1 N 1 N 1
M= 3 ToM T 62
Note that
e M2+M 1 2M*+3M+1
C = — _ —_ =
M 3 2 "6 6 ’
so that

(M +1)(2M +1) =2M?* +3M + 1 = 6.,y M.

We wish to evaluate, for large n,

n

E(l,0) = ! /_:Cos(fzzz) % sz(if\;[(;r/;;x> —% dx,

We shall use saddle point A method to estimate the integral. Since

£0) = 37 - con(jn)
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its Taylor expansion around x = 0 is

f@y:y_”4+ﬂfM+l%ﬁ+0@ﬂ. (3.5)

Where we have used

X, M(M+1)(2M +1
;Mm: ( ?))( )

It is convenient to introduce
(M+1)(2M +1)

o= e ’
so that
(M +1)(2M + 1) B ey M?
12 2
Hence, we may write using 3.5
M2
f@g:1—cM2 2%+ O0(2%),

where ¢y = 1+ O(1/M). Now, raising this expression to the n'" power, we have

2 n
<1 — CMQM 7% + O(x4)) .

For small z (the dominant region in the saddle point analysis), we write

M? " M?
(1 - CM2 z® + (’)(x4)) = exp [—MMT xz} [1 +O(n x4)} :
Since the effective integration region is x = (’)(nil/z), we have nz' = O(1/n). In other
words, the error in the exponentiation is of order O(1/n). Thus, for large n the integral is
approximated by

E(l,0) = % /7T cos(lx) exp —MMTW 332] [1 + O(%)]dw (3.6)

—T

Since the dominant contribution comes from x near 0, we can extend the integration limits to

+oo A (introducing an error that is exponentially small in n):

E(l.,0) = % /Z cos(fx) exp [—MMTW x2] dx [1 + O(%)] (3.7)
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Using the standard Gaussian integral

brle @ dr = [/ = (__)’
/_ cos(bx)e x \/7 exp| ——

with
M2
2
from 3.6 we obtain
00 ncy M? 9 2m a
| eostee) exp [ e = [ e[

Collecting the error terms, we conclude that for large n, from 3.7 we get

Ellne) =/ m exXp [—ﬁ] {1 +0 (%)} -

Now we estimate the second moment 3.4. For this we will only show the leading term to give

the idea, the full proof is out of scope for this thesis. For the full proof, see [BCP01|. We have

1 " " / n
K[l ¢lne] = 2n)? /7r /7r cos(lxy) cos(l'xs) [ (21, x2) day dxs, (3.8)
where
| M
@) = 53 3 costio
and
flera) = 2 [flor+a) + flar — ). 3.9

Within the domain of integration, consider the square () with corners at (0, £7), (£m,0). The
coordinate axes partition @ into the 4 isosceles triangles. The integration domain [—,7]?
consists of ) and four other triangles. Consider one of the latter triangles, in the first quadrant
for example. It has its corners at (0, 7), (m,0) and (7, 7). Clearly, this triangle can be obtained

via a parallel translation from the triangle with corners at (—m,0), (0, —m) and (0,0) in the

direction of the vector (1,1). In this translation, every point (z1,x2) moves to a point (z}, x})
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such that

/ / / /
X9, Ty = T1 + To+ 27 Ty — Ty = T1 — Ta.

Now f(z) is 27 periodic, f(x1,22) = f(2),x5). Now note that when ¢+ ¢ is odd, the integral

3.8 is zero, i.e., integral is zero if ¢ and ¢ are of different parity (one odd and one even). So

we only need to consider ¢ and ¢ of the same parity. Now we start estimating the integral.

The idea is to again use saddle point approximation A. Clearly, f(z1,x2) has a unique global

maxima at (zy,x2) = (0,0) in [—m, 7| hence we expand around (0,0). For small z we expand

the cosine as

N2
cos(jx) =1— (];C) + O(z%),
so that
M M
_ 1 N1 2 4
Fla) = 5 D ostia) =1 = 337 3+ Ol
Since u
2]2 _ MM+ 1)(2M + 1)7
=1 0
we define
M4+ DEM4+1) 11 1
M= e “ 37 oM oM

and hence we get
e M? 2MP +3M +1
2 12 '

Thus, the expansion 3.10 becomes

2
MCM2

flz)=1- 2% 4+ O(z?).

Similarly, expanding f(x1,x2), Equation 3.9, for small z1, xs, we have

Using
(21 + 32)* + (21 — 22)* = 2(2] + 73),

30

(3.10)

(3.11)



CHAPTER 3. THE NUMBER PARTITIONING PROBLEM

Equation 3.11 simplifies to

M?c
flar,22) = 1= == (af +a3) + O(at, a3).
Now we want (f(x1,22))". Note that
M?c
log f(x1,22) = — 5 = (2} + 3) + O(at, x3).

Hence we can write

(f(z1,22))" = exp [nlog(f (w1, 72))]
nM?cyy,
2

~ exp [_ (22 + a:g)} +exp [nO(at, o))

Because the main contribution comes from a small neighborhood around (0, 0), we may extend

the integrals to R? without changing the leading asymptotics. Thus, the integral 3.8 becomes

nM?cyy
2

Bllyih] = o [ costtmcosttrayexp | <50 0t )| 4 exp [n0(et, o).

The leading order term (say Ip) is given by the separable Gaussian integrals

2
1 > M?>

J

with ¢ = ¢ and ¢y = ¢'. Using

& —ax2 m b2
/_Oo cos(bz)e " dx = \/g exp<—£>,

2 .
nMler we obtain

with a = 5

s 1 27 [_ > } 27 [_ (0")? }
0~ (2m)? nM?2cy, *xp 2nM?2cyy nM?2cy, *xp 2nM?2cy,
1 [ 2+ (ﬁ’)Z]

= —— X —_
2mnM?32cy, P 2nM?32cy,
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It is convenient to introduce
1

= M\2mnecy’

so that the leading contribution is written as

02+ (é’)2> .

2 e —
Tn eXp< 2nM?2cyy

Thus the local saddle-point expansion gives

E[lyelne] = 72{(3%(_%) i O(%) }

A more careful analysis (which is out of scope of this thesis) done by [BCP01] shows that the

integral is

€2+(f/)2 1 1
— 942 e —
st =25 (o (< ipes )+ (1) 0 (1))

+ g—: (Op40r.0 + Oo—pr0) XD <—

62 + (E/)Q
InM2cy |-

Note that we have only considered bounded M, but in reality, it can grow and saddle point
method cannot be applied directly. Fortunately, a careful analysis of error terms by [BCPO1]
showed that the result still holds, but we will not discuss that as it is out of scope for this

thesis. O

3.3.3 Phase transition

Having the moment estimates of I,,, we now turn to establishing the existence of Phase
transition in NPP formally (Theorem 1). We start with the estimating the probabilities of

existence of perfect partitions.

Lemma 1. Given a Number Partitioning Problem, the probability P(Z, , > 0) is bounded above

and below as

fn exp(——e2 )—I—ﬁ) if £=0
]P)(Zn’g > 0) < 2 E 2nM?Z2c)s n f

Pn exp(—%)—i—%) if £#0
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1
2 (1 + exp <nM€56M) <<nch> + (%)) + %)

where p,, is defined as p, = 2" 1y,,.

]P)(Zn,g > 0) >

Proof. Consider ¢ # 0. From Theorem 2 we have

Ellne =7 (exp (—%) + O(n—1)> .

If we multiply by 2"*! we get

E[Z, = pn (exp (—%) + o<n—1)) .

In other words, there exists a constant C'; > 0 such that

E[Z,4] < pn [ ex __f )L a (3.12)
mtl = Pn P 2nM2cy, n /)’ ’
Also notice that
£2
E[Z. /] > - . 1

Furthermore, from Theorem 2 we have

2+ (5/)2 1 1
— 9~2 - —
sttt = (o (542 10 (1) 0 (1)

Tn
ton (0400 + de—r0) €XP (

B 277,M26M

If ¢ =1 we get

202 1 1 v 202
B2 ] — 902 o 1 I exp (=
o =27 (eXp < 2nM2cM) o (n> o (n%ﬂ”)) T P < 2nM2€M)

Multiplying by (2"71)? we get

E[Z2 ] =202 | ex 2 +0 = +0 1 + 2pp ex o
nit) = “Pn P 2nM?2c)y, n NnPn Pn SXP 2nM2cyy
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Or in other words, there exists a constants Cy > 0 and C3 > 0 such that

202 Oy Cs 202
E[Z2,] < 20 s “2 =3 2, =) (314
Znel < 200 <exp( 2nM2cM) " ( n ) " (np>) i exp( 2nM2cM> (3.14)

Now using Markov’s inequality B and 3.12 we get

2 4
P(Zne > 0) < py, | exp TSV + - )

Using Cauchy-Schwartz inequality B, 3.13 and 3.14 we get

2 2
pn eXp < ZHMQC]\{)

P(Zn,f > 0) 2 5 ) 202 Co Cs ) 202
Pn | €XP T 2nMZ2cy; + (7) + Tpn + 2pp €Xp T 2nMZ2cyy;
1
= P(Z,,>0) > p . - N
2 (Lo (i) () + () + )
The same calculation can be done for ¢ = 0, the only difference is that Z,, , = 2"1,, . O

Now we use 1 to prove Theorem 1. It follows from a simple analysis of probability estimates

under the right limits.

Proof of Theorem 1. We need to find the probability of existence of perfect partitions. Let Z,
be the number of perfect partition for zero target. Clearly, on &,, we have 7,y = Z,, and

Zn1 = 0 whereas on 0,,, we have Z,,; = Z,, and Z, o = 0. Hence we have
P(Z, > 0| &,) =P(Z,p > 0)P(&,) and P(Z, > 0]|0,) =P(Z,1 > 0)P(G,).

It can be shown that P(§) = P() = 1 with an error exponentially small in n. Hence we can

write

P(Z, > 0) = P(Zno > 0P(6,) + P(Z,1 > 0)P(6,)

1 1
= P(Z, >0) = éP(an >0) + §P(Zn,1 >0)+02™).
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Now using Lemma 1 we can write

1
140 () +0(4) + &

P(Z, > 0) = (3.15)

npn n

The sensitive parametrization defined in Equation 3.1 corresponds to

2n+)\n

M_\/ﬁ‘

In this parametrization lim, ,,, k, < 1 means lim, .., A\, — —o0o. Note that in this regime
pn — 00. Now from Equation 3.15, we can see that P(Z, > 0) — 1 as n — 0o. On the other
hand lim,, , kK, > 1 means lim,_,, A\, — o0. In this regime p,, — 0. Hence again by Lemma
1 we have P(Z,, > 0) < p,(1+ O(n™1)) for £ = O(M). Hence we clearly have P(Z, > 0) — 0

as n — o0 ]

This proves the existence of phase transition in NPP. This was an extremely celebrated result
in theoretical computer science, especially in the study NP-completeness. In this thesis, we
have shown, as we shall see in the later chapters, how these results can serve as powerful tools

for studying Strong Lottery Ticket Hypothesis.
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Chapter 4

NEURAL NETWORK PRUNING AND LOTTERY

TICKETS

4.1 The Lottery Ticket Hypothesis

As discussed in Chapter 2, neural networks are powerful tools across various domains, but their
training requires significant computational resources. In some cases, these networks grow so
large that even inference becomes computationally expensive. Consequently, developing effi-
cient algorithms for both training and inference is a crucial area of research in machine learning.
One effective approach to improving efficiency is pruning, which reduces the number of param-
eters in a neural network by systematically removing weights. Remarkably, pruning techniques
can reduce the parameter count of trained networks by over 90% without a significant drop
in performance. This not only accelerates inference but also minimizes storage requirements,
allowing one to train a large network, prune it, and achieve much faster inference with a sig-
nificantly smaller memory footprint. A widely used pruning method is magnitude pruning,
where the network is first trained, and then the smallest p% of the weights—determined by
their magnitude—are set to zero. However, training a sparse network from scratch does not
perform as well as pruning a fully trained network as illustrated in Figure 4.1. Therefore it was
a big surprise when [FC18] proposed the following hypothesis: A dense, randomly-initialized,
feed-forward networks contain subnetworks (winning tickets) that—when trained in isolation

— reach test accuracy comparable to the original network in a similar number of iterations. If
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This works!

Train
_—

Figure 4.1: Training a sparse network from scratch does not perform as well as pruning a fully
trained network.

true, and if one can find a way to find these sparse networks (called Lottery Tickets) hidden in
the dense network, it would be great as this would reduce both the training and the inference
cost. To support their hypothesis, they also gave an algorithm to identify the Lottery Tickets
called the Iterative Magnitude Pruning (IMP) algorithm. The IMP algorithm is illustrated in

Figure 4.2 It goes as follows: First, randomly initialize the weights of a network and note this

Set original initialization
and Repeat

Figure 4.2: The Iterative Magnitude Pruning (IMP) algorithm.

initialization. Then train this network on a given dataset. Now prune a certain amount of
the weights of the network based on the magnitude. For example, smallest 5% of the weights
are removed. These weights are now freezed and cannot be trained further. For the rest of
the weights, set their value to the original initialization and train again on the given dataset.
Repeat the process until the performance is not dropping significantly. This procedure can find
sparse subnetworks "Lottery tickets", that can be trained from scratch and still obtain results
comparable to a dense network. The algorithm basically finds the so called "masks", which
are basically a set of weights which are supposed to be set to zero freezed during training.

The conjecture was quite celebrated in the field due to its impactful promise. However, as it
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is evident, it takes multiple rounds of training to find the Lottery, and hence it is not really
helping in decreasing in decreasing the training cost. Off course, it decreases the inference
cost, that is not the only bane of this this algorithm. Its was also realized that there Lottery
tickets are transferable, i.e., once a Lottery ticket is found on a given dataset, it can be used on
similar datasets. This is quite powerful as one can spend computational resources on finding
the lottery ticket on some dataset, and then it can be used on many similar datasets making
most of the training much less expensive. Therefor the Lottery ticket hypothesis became more
famous and a lot more experimental work was done. But the problem of proving the hypothesis
remains open. It turns out that it is extremely hard to do any kind of theoretical work on a

trained network, and hence it is extremely difficult to make progress on this problem.

4.2 The Strong Lottery Ticket Hypothesis

In 2018, [FC18| proposed the Lottery Ticket Hypothesis, which states that every dense network
contains a sparse subnetwork that can be trained from scratch, and performs equally well as
the dense network. Following this line of work, [Zho+19], [Ram+19] and [Wan+19] found
algorithms to find subnetworks within large randomly initialized networks that perform as
good on a given task. This motivated the Strong Lottery Ticket Hypothesis (SLTH), which
states that sufficiently overparameterized randomly initialized neural networks contain sparse
subnetworks that will perform as well as a small trained network on a given dataset without
any training. This motivated a lot of formal results proving that a given target network can
be approximated by pruning a sufficiently large network. Omne of the first results were by
[Mal+20], where they showed that to approximate a target network of width [ and depth d,
one needs a network of depth 21 and width O(d°l?). [Pen+20] improved this bound by proving
that width O(dlog(dl)) is enough. Another construction was provided by [Bur22|, where they
showed that a network of width [ + 1 is enough to approximate a network of width [, with a
certain compromise on the width. An informal statement of these kinds of results is provided

below.

Theorem (Informal statement of previous SLTH results). With high probability, a random
artificial neural network Ng with m parameters can be pruned so that the resulting subnetwork

N e-approzimates (i.e., approzimates up to an error €) any target artificial neural network Ny
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with O(m/ logy(1/€)) parameters.

There are also results on the lower bound on the required size of a network in order to approxi-
mate a given target network. An informal statement of the result by [Pen+20| on lower bound

is given below.

Theorem (Informal statement of Theorem 4). There exist a to layered net 2-layer neural
network with width d which cannot be approximated to error within € by pruning a randomly

initialized 2-layer network, unless the random network has width at least §2(dlog(1/e)).

[DK21] showed that within a large network, there exists subnetworks that perform well on a
given task, and are resilient to extreme forms of quantization, such as binarization. They also

gave a theoretical result related to their claim.

Theorem (Informal, [DK21|). Every fully-connected (FC) target network with ReLU activa-
tions of depth | and width n with bounded weights, a random binary FC network with ReLU
activations of depth 21 and width O(In®? + Inlog(In/8)) contains with probability (1 — §) a

binary subnetwork that approximates the target network with error at most €.

For the convenience of the reader, we now state some of the results mentioned in this section

formally.

4.2.1 SLTH: Formal Results

First we define some notation and setup. We use lowercase letters to represent scalars (w) and
bold lower-case letters to denote vectors (v). The i-th coordinate of the vector v is denoted
as v;. Matrices are denoted by bold upper-case letters (W). the ¢, norm of a vector v will be
denoted by ||v||. The uniform distribution over the interval [a, b] will be denoted by Ula, b]. We
use ¢, C to denote positive absolute constants. We also recall the definition of neural network

from Chapter 2.

Definition 6. An neural network is a function f : R% — R% defined as
f(x) =W,0(W,_;...0(W;x)), (4.1)
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where W; has dimension d; X d;_1, x € R, and o : R — R is the nonlinear activation function

and v = o(x) means v; = o(x;).

From here on, all neural networks will have ReLU nonlinear activation, i.e., o(z) = max(0, z).
Our goal is to start with a neural network f(x) and a second larger neural network g(x) of the

form

g(X) = MQZO'(MQZ_:[ ...O'(M1X)),

and approximating f by obtaining a pruned version of g by eliminating its weights

9(x) = (S © Ma)o((Sai-1 © My;_1)...0((S1 © My)x)),

where each S; is a binary (pruning) matrix, with the same dimension as M;, and ® represents

element-wise product between matrices.

Theorem 3. Let F be a neural network of the form defined in Equation 4.1. Consider a 21

layered randomly initialized 21-layered neural network

g(X) = MQ[U(MQZ_I...U(M1X>>,

whose weights are drawn from U[—1, 1], My, has dimension

did; 4l
d; di—110g ———=,
x Cdi-slog min{e, §}
and Mo;_1 has dimension
d;_1d;l
di_1log ————— x d;_;.
Cdiy Ogmin{e,é} X i

Then with probability at least 1 — 9, for every f € F, 3 S; such that

min sup || f(x) — (St © Ma)o((Sz—1 © My;—1)...0((S1 © My)x))[| <e.

Sie{0,1}4%%i-1 ||| <1

Theorem 3 is basically saying that to approximate a target network of width [ and depth d,
one needs a network of depth 2/ width O(dlog(dl)). Now we discuss a lower bound proved
by [Pen+20]. Before stating the main result, note that any linear transformation Wx where

W € R? xR and W € R? can be expressed as a 2 layered neural network. Let F be the class
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of functions

d ., od w
F:={hw : W e R x R}, where hw(x) = [I —I] o x| . (4.2)
-W

Theorem 4. Consider a neural network, g : R? — R? of the form g(x) = Myjo(M;_;...0(M;x)),
with arbitrary distributions on M;’s. Let G be the set of neural networks that can be formed by

pruning g. Let F be defined as in Equation J.2. If the following statement holds:

1
VhelF, IP(EIg/EQ: sup ||h(x) — ¢'(z)|| <e> =

x|z <1

then g(x) has Q(d*log(1/€)) parameters. Further if | = 2, then the width of g(x) s Q(dlog(1/¢)).

We now state the theorem by [Bur22| which approximates an [ layered network using an
[ 4+ 1 layered network. The architecture of a neural such as in Equation 4.1 is the tuple

n = (do,dq,...,d;). We will also use the notation n; = dy. We now state the result by [Bur22|.

Theorem 5. Assume €,6 € (0,1), a target network fi(x) : R™ — R with architecture i,
Ly layers and Ny number of non zero parameters, and a source network fs with architecture ng
with Ly = Ly + 1 layers are given with all parameters sampled uniformly form [—1,1]. Then,
with probability at least 1 — 6, fs contains a subnetwork f. C fs so that each output component

i is approrimated as maXyerno | fri(X) — fei(x)| < € if

> Cnyylo !
Mg = Ln .
A1 t, 108 mln{€l+1,5/,0}

for 1> 1, where p = CN; " log(1/ min{(min; ¢),8}) and ¢ is defined as

€
€ =
Ly

Li—1
£ (k) £
(14 M) (1+L) 11 (IIW,: Hoo+Lt>

t7 k=141

for any v > 0. Wt(k) denotes the weight matriz of the target network at layer k and M, :=

! ; 1
SUPgep ||Z']|1. Furthermore we require ngy > Cny g log <—min{€l+176/p}> .
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Originally, this result by [Bur22| was proved for arbitrary activation functions. Infact, general-
ization to arbitrary activation functions was one of the major contributions of this work, except
for proving an SLTH result with [ + 1 layers. However, in this thesis, we are only interested in
working with ReLLU activation function, and hence we have stated this result for ReLU acti-
vation only. In the next chapter, we shall adapt constructions in [Pen-+20]|, [Bur22| and prove
SLTH results, but starting in a quantized setting. We will see that the construction by [Bur22]
is quite powerful in the quantized setting in our framework. It is using this construction we
will be able to get rid of undetermined constants (mostly) and provide the exact size of the

network required to represent a given target network.
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Chapter

LOTTERY TICKETS, WEIGHT QUANTIZATION

AND PHASE TRANSITION

5.1 Introduction

In chapter 4, we reviewed some literature on the theoretical work on Strong Lottery Ticket
Hypothesis (SLTH). All these results assume a large network whose weights are randomly
initialized, sampled from some continuous interval. Then they try to prune this network
in certain ways to approximates a given target network. However computers always represent
numbers with finite precision, and hence weights of a neural network are numbers with finite
precision, taken from some discrete set. In this chapter, we ask an important question: Is the
precision of with which the weights are represented is related to weather a given
large network can be pruned to some target network. Moreover, quantization is another
method for compression of neural networks. It has been observed that the weights of a trained
neural network can be quantized to a great extent without significant decrease in performance.
In this chapter, we provide a relationship between the precision of weights, and size of a large
network that needs to hold so that it can represent a given target network. We prove results
answering this question, which we think lay the foundation of future work in the intersection
of pruning and quantization of neural networks. One key difference between our and previous
results is that we while previous results go for approximating the output of the given network,

we go exact an representation. This was done for theoretical simplicity. Generalizing our
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results to approximate a given network is a challenge for future work. We assume a target
network whose weights are sampled from a discrete set like S5, = {—1,...,01,201,...,1},
where 6 = 107" for some k; € N and a large network whose weights are sampled from say
Ss, = {—1,...,09,205,...,1}, where § = 107%, with k; > k;. The number §; defines the
precision of the network. The larger network can be quantized, i.e., the precision of it’s
weights can be decreased (by removing less significant digits from after the decimal place:
0.4326 — 0.43, for example) and it can then be pruned. We then ask what relationship must
hold between the precision size of the large network such that it can be pruned the given target
with high probability. We further assume that after certain operation, the precision is set to §
again. For example, in a network, we may assume that output from any neuron of each odd
layer is of precision §. This may happen at different stages in the target and the large network,
and may vary from result to result. This assumption was made for theoretical simplicity and
we leave it to the future work to deal with a more general case. We adapt constructions from
[Pen+20] and [Bur22| but starting in a quantized setting, we reduce the problem to solving a
bunch of Number Partitioning Problem (NPP), which is an equivalent problem to RSS. NPP is
one of the most important problems in the theory of NP-completeness and is known to exhibit
a Phase transition [BCP01|. Leveraging the known results on NPP, it is natural to deal with
quantized system. In one of our results, the required network size of the large network is exact
except for it’s first layer, free of any undetermined constants unlike other pervious works. We
also provide lower bounds on the required parameter count of a network to represent a two
layered network. We do this by a parameter counting argument similar of [Pen+20], but in
quantized setting. The upper and lower bounds have the same form asymptotically, indicating

optimality of our results.

Statements of Results

In this section, we formally state our results on SLTH and weight quantization. We start by

defining some notation.
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Notation

We use lowercase letters to represent scalars, such as w, y and so on. We use bold lower-case
letters to denote vectors, such as v. The 7 component of a vector v is denoted as v;. Matrices
are denoted by bold upper-case letters such as M. If a matrix W has dimension d; X ds, then
we say W € R4*% G5 denotes the set {—1,...,8,25,...,1} where § = 107% for some k € N.
A number b is said to be of precision if b € S5. We use C, C;, 7 € N to denote positive absolute
constants.

5.1.1 Preliminaries and Setup

Definition 7. An neural network is a function f: R% — R% defined as

f(x) = W;o0(W_...0(W;x)), (5.1)

where W has dimension d; xd;_,, x € R, and o : R — R is the nonlinear activation function

and v = o(x) means v; = o(z;).

The elements of W's are called weights or parameters of the network. From here on, all neural
networks will have ReLU nonlinear activation, i.e., o(z) = max(0, ). Our goal is to start with

a neural network f(x) and a second larger neural network g(x) of the form

g(x) = Myio(My_4...0(M;x)),

and represent f by obtaining a pruned version of g by eliminating its weights

9(x) = (S © My)o((Mg—1 © My;_1)...0((S1 © My)x)),

where each S; is a binary (pruning) matrix, with the same dimension as M;, and ® represents

element-wise product between matrices. In other words, we need to find S; such that f = g.
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5.1.2 Quantized SLTH Results

The main question that we want to answer is the following: given a target neural network,
whose weights are of precision d; and a large network of precision d,, such that d; > d9, what
is the relationship between 9, and size of the large network such that the bigger network can
be pruned to the target network. A key difference here is that we are interested in exactly
representing a network and not approximating it within an error €, as it is more natural in the

discrete setting. We start with some definitions.
Definition 8. A §-quantized neural network is a neural network whose weights are sampled

uniformly from Sz = {—1,...,8,26,...,1} with § = 107% for some k € N.

We also have some mixed precision assumption on the target and the large network. For any
target network, the output of a neuron cannot be more precise than the precision of it’s weights.
Such networks will be called networks of Type I. Then we have two other kinds of networks,
Type II and Type III. In a Type II network, the output of every odd layer cannot be more
precise than the precision of it’s weights. In a Type III network, the output of every neuron
cannot be more precise than the precision of it’s weights, except for the first layer, where output
can be of any precision. Type II and Type III networks will serve as large networks. These
assumptions were made for theoretical simplicity, and we leave it to future work to deal with

the general case.

Definition 9. A neural network is said to be of Type I if it is of the form

f(x) = [Wi[o(Wii.. [0 (Wix)]5)ls]s,

of Type 11 if it is of the form

f(x) = W0 (Wy1...[0(Wa (0 (Wix)))1s)]s,

of Type III if it is of the form

f(x) = [Wa[o(Wy1...[0(W2(0(W1ix)))]s)]s]s-

where 0 is the precision of elements of W;’s and [-]s operation makes a number of precision ¢
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by removing sufficient number of insignificant digits.

Henceforth we denote [-]s by [] as 0 is clear from the input of [-] function. Now we state our
first main result, which is analogs to the theorem proved by [Pen+20], but in the quantized
setting.

Theorem 6. Let F be the class of 61 quantized neural networks of Type I. Consider a 2l layered

randomly initialized do-quantized neural network
g<X) = Mg[O’(Mgl,l...O(MlX)),

of Type II with 01 > d9. Say the precision of elements of M;’s is reduced to 6 such that § < ;.

If My, has dimension

1
di X Cdi_l 10g2 5—2,
2

and Mo,_1 has dimension

1
Cdi_l 10g2 5—2 X di—l-

Then for every f € F,

35S, € {0, 1}%*471 . (Sy ® My)o((Sar—1 @ My_1)...0((S1 © My)x)) = f(x).

-
1-N O (log2 ﬁ)

where Ny is the total number of parameters in f.

with probability

Our next theorem employs construction from [Bur22|. Note the absence of arbitrary constants

(except the first layer) in the required size of the large network.

Theorem 7. Let F be the class of 01 quantized neural networks of Type 1. Consider an l + 1

layered randomly initialized neural network

g9(x) = M1 10(M;...0(M;x)),

of Type 111 whose weights are sampled from {—1...,=6,0,...,1} with d5 < 61. Say the precision
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elements of M, ’s is reduced to 6 such that 6 < 6;. If My and My has dimensions
1 1 1
d() X Cd() lOg2 ﬁ and 2d1 10g2 ﬁ X Cdo IOgQ ﬁ
respectively, M;, 1 has dimension greater than
1 1
2d1 10g2 5—2 X 2di+1 10g2 ﬁ
V2<i<l—1 and M;y 1 has dimension
1
21Og2 <ﬁ) dl,1 X dl.
Then for every f € F we have

38S; €{0,1}%*4= . (S © My1)a((S; © My)...o((S; @ My)x)) = f(x).

1 1Y\
1 — N, 2log, (ﬁ) (@) ((log2 5—2) >

where Ny is the total number of parameters in f.

with probability

<=

5.1.3 Lower Bound by Parameter Counting

We now state the result on lower bound, where we show using parameter counting argument
that a there exists a two layered § quantized network with d? parameters that cannot be
represented by a neural network with unless it has A (d2 log, (%)) parameters. Note that any
linear transformation Wx where W € R? x R? and x € R? can be expressed as a 2 layered

neural network. Let F be the class of functions

d ., od w
F:={hw: W e R x R}, where hw(x) = [I —I] o x| . (5.2)
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Theorem 8. Let g : R — R? be a § quantized neural network of the form
g(X) = MIO'<Ml,1...O'(M1X)),

where elements of M;’s are sampled from arbitrary distributions over Ss. Let o be the total
number of non-zero parameters in g. Let G be the set of all matrices that can be formed by

pruning g. Let F be defined as in Eq. 5.2. Then if
VheF,P(3g€G:g =h)>p,

then we must have

2
a > log, p + d?log, (5—1—1).

We see that there the lower bound in Theorem 8 and upper bound in Theorem 6 have the
same fore asymptotically the same i.e., C'mlog (%), where m is the number of parameters
in the target. Hence we have showed that atleast for exact representation of network, and
for this simple case of two layered network, our solution is optimal in the asymptotic sense.

Generalizing this is another challenge for the future work.

5.1.4 Random Subset Sum Problem

The random subset sum problem (RSSP) is the problem of finding a subset of a given set such
that the sum of this subset equals a given target . RSSP is an important tool in proving
results on SLTH [Pen+20| [Bur22|. RSSP and NPP are closely related, and hence we can use
the results in this section to make statements in RSSP. We shall then use these results on RSSP

to prove results on SLTH and quantization.

Definition 10. Let X = (X1, Xs,..., X,,) be a set of integers sampled uniformly from the

set {—M,...,1,2,3,...,M}. The Random Subset Sum Problem is defined as the problem of
finding an index set S C [n] such that ), ¢ X; =t for a given integer t, called the target.

Lemma 2. Consider a Random subset sum problem on the set X = (X1, Xo, ..., Xcn) sampled

from an arbitrary distribution with support {—M,---—1,1,..., M} with a target t = O(M).
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o There exists C' such that n samples out of the Cn will be uniformly distributed on
{—=M,...,—=1,1,..., M} with high probability. Let’s relabel these uniform samples as
(X1, Xo, ..., X,). This defines a new subset sum problem with set (X1, X, ..., X,) and
target t.

o Let Y, be the number of possible solutions to this new problem. Then

2 Ci ; —
P(Y: > 0) < p"<eXp<_M§—QCM>+7> ye=y

2pn (exp <—%> + %) if £#0,

1
P(Y,,; > 0) > E - - —
(1o (i) ((52) +(59) +21)
where
0=A-2t A=) "X,
=1
1 B X? 1 n 1 L 1

n = —_— Y, C = _— = — _— .

R Yo r=ya M M2) T3 o e

Lemma 3. A random subset sum problem with given set X = (X, Xa, ..., X,,) and target t

can be solved iff the number partitioning problem can be solved with the given set X and target

A—2t (or2t —A), where A =5"" | X,.

Proof. First of all notice that a Number Partitioning Problem on a set of numbers X =
(X1, X2, ..., X,,) sampled uniformly from the set {—M,..,1,2,.., M} can be solved iff the Num-
ber Partitioning Problem on a set of numbers X = (| X, | X3/, ..., | X,|) sampled uniformly from
the set {0,1,2,.., M} can be solved for any given target. This is because, first, it is obvious
that {X;}, is distributed uniformly over {0,1,2,.., M}, and secondly, the number partition-
ing problem does not care about the signs of the numbers, a sign can always be absorbed in

the o; while solving the number partitioning problem.

We have a random subset sum problem with set X and target ¢. Assume number partitioning
problem can be solved with the given set X and target A — 2¢t. Notice that NPP does not care
about the sign of the target, as an NPP with target k& can be solved iff an NPP with target

—k can be solved. WLOG assume there exists two partitions of X, with sums be x and A — z
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such that (A —2z) —x = A — 2t = x = t. Hence one of the subsets must sum up to ¢,
so the random subset sum problem is solved. It also follows that if this constructed number
partitioning problem cannot be solved, then the given random subset sum problem can also

not be solved. [l

Proof of Lemma 2. The first part of the lemma is obvious from rejection sampling methods
(See Appendix C), we will prove the second. Considers the number partitioning problem
corresponding to the given random subset sum problem as given by Lemma 3. The target of
this number partitioning problem is £ = A — 2t. Consider ¢ # 0. Note that if A is even (event
denoted by &,,), then ¢ is also even and if A is odd (event denoted by 0,,), then ¢ is also odd.
The probability that the random subset sum problem can be solved can be written in terms of

the probability that the number partitioning problem can be solved
P(Y,: > 0)=P(&,)P(Z,, > 0|8,) + P(0,)P(Z,, > 0/|0,)

If 7 is even, then

P(Zpy > 0) = P(6,)P(Zny > 0[6,).

If 7 is odd, then
P(Z,, > 0) =P(06,)P(Z,, > 0]0,).

But on &, £ is always even and on 0,, ¢ is always odd. Hence P(Y,,; > 0) can be written as
P(Y,: > 0) =2P(Z,, > 0).
From Lemma 1 it follows that

2 o)
P(Y,: > 0) <2p, | exp —m + — )

1

(1o (e ) () + (9)) +50)

Same can be done for ¢ = 0. O]

]P)(Yn,t > 0) 2

Lemma 4. Let M = M(n) be an arbitrary function of n. Consider a Random subset sum

problem on the set X = (X1, Xo,...,X,) sampled uniformly from {—M,...,—1,1,... M}
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with a target t = O(M). If
. log, M
Kp = lim

n—oo n

<1,

then we have

PY,:>0)=1-0 (%) )

nv
Proof of Lemma 4. We are given that lim,,_,. K, exists and is less than 1. Consider a more

sensitive parametrization

1 An ontAn
Kp=1— 082 1t + — or M = )
2n n vn

In this parametrization lim, _,, K, < 1 means lim, .., A, — —o0o. Note that in this regime

pn — 00. Now we have

v

P(Y,: > 0)

v

::i']P(Y%J >’O)

Now t = O(M) and assume

1
A< —M+/nl )
J3rp vnosn

According to Hoeffding’s inequality B, that happens with probability

132
1 —=M*nlogn
]P’(A<—M nlogn) >1—exp (W—>

V3+ 6 4nM?
1 1
— P(A< My/nlogn| >1-—
( V3+ 6 8 ) - 1, TG

Now as p, — oo, we have
1

=
n3+8

1
— P(Yn7t>0)21—(’)( 5 )

n3+8

P(Y,:>0) >

Hence the probability (say P(F)) of events P(Y,; > 0) and A < ﬁMvnlogn happening
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o= (-0((5)) ()

Note that this probability will converge to 1 fastest if § = % Hence we choose = % and we

ro-(-0(3))

together is given by

get

]

Lemma 4 basically tells us under what condition can a RSSP be solved with high probability.
It is important to note here that by high probability, we mean probability converges to 1 as
the size of the set goes to oco. Now we shall leverage this result to prove statements on SLTH

in quantized setting.

5.2 Proving Results on SLTH and Weight Quantization

5.2.1 The Pensia Construction

Now we provide the proofs of various results stated in Section 5.1.2. We start with Theorem
6. We follow the strategy of [Pen+20] to reduce the problem of pruning (or setting weights to

zero) in order to represent a target network to a bunch of random subset sum problems.

Lemma 5 (Representing a Single weight). Let g : R — R be a randomly initialized 6o quantized

network of the form g(x) = [vIo(uz)] where u,v,e R*". Assume 6 < 6;. Say the precision

of weights of g is reduced to & such that 6 < 1. If n > C'log 5%, then with probability
1\

Vwe S;, Ise€{0,1}*: [wa] =[(vos)olur).

we have

where []s is the operation which reduces the precision of a number to §.

Proof. Let the precision of g be 6 < ;. First decompose wx = o(wz) — o(—wz). WLOG say
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w > 0. Let

where a,b, c,d € R" 51,85 € {0,1}". This is shown diagrammatically in Figure 5.1.

Step 1: Let a* = max{0, a} be the vector obtained by pruning all the negative entries of a.
Since w > 0, then for all z < 0 we have o(wz) = bYo(a™z) = 0. Moreover, further pruning
of at would not affect this equality for z < 0. Thus we consider z > 0 in next two steps.

Therefore we get o(wz) = wz and bTa™z = Y, bia .

Step 2: Consider the random variables Z; = b;a;". These are numbers of precision 6%, sampled
from the set S5 x Ss. Now w, which is a number of precision 97, belongs to the set S5 x Ss, as
§ is of the form 107 for ¥ € N and 6 < 6;. Now by Lemma 2 and 4, as long as n > C'log, 5%,

the subset sum problem with set {Z;} and target w can be solved with probability

1\
p:l—0<<10g25—2) >

Note that solving subset in an integer setting where numbers are sampled from {—M, ..., M}
and numbers of precision § setting is equivalent with § = ﬁ Hence it follows that with

probability p
VwesSy, 3s€{0,1}":w=>b"s; 0a’.

where S denotes positive members of S5. The part shown in green in Figure 5.1 hence handles

positive inputs.

Step 3: Similar to steps 1 and 2, we can prune negative weights from c and let the red part

shown in figure handle negative inputs. It will follow that
VweSy, Is,e{0,1}":w=d"s;0c.
with probability p. Hence Lemma 5 follows. m

Lemma 6 (Representing a single Neuron). Consider a randomly initialized 05 quantized neural

network g(x) = [vIo(Mz)] with £ € R, Assume 6y < §1. Say the precision of weights of g is
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a1 hd b1
°
QAn—1 bn—l
p, b,

Figure 5.1: Approximating a single weight with ReLLU activation

reduced to § such that § < 8y. Let §(x) = [(s ® v)To((T @ M)x)] be the pruned network for

a choice of binary vector s and matriz T. Let fo(x) = [wlz] be a single layered 6, quantized

1

network. If M € RE410s2 774 gnd v € ROVos 52, then with probability
1
1\ "7
1-d0O ((log2§> ) ,

Ywe Sl 3 s T: folx)=gx).

we have

Proof. Assume weights of g are of precision §. We prove the required results by representing
each weight of the neuron using 5 (See Figure 5.2).

Step 1: We first prune M to create a block-diagonal matrix M’. Specifically, we create M by
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only keep the following non-zero entries:

u 0 --- 0

0 uwp -+ 0 1
2 . where u; € R9"8252

0 0 --- wuy

We choose the binary matrix T to be such that M’ =T ® M. We also decompose v and s as

S1 Vi

So Vo 1
S = , V= , where s;,v; € RO8252

Sd Vd

Step 2: Consider the event
Ei . ['U}ZLUZ] = [(Vz ® si)TJ(uixi)].
According to Lemma 5, this event happens with probability

1\
p:1—0<<10g25—2) >

The event (F) in Lemma 6 corresponds with the intersection of these events F = N, E;. By

taking a union bound B EquationB.4, E happens with a probability dp — (d — 1), which is

1\
1-d0O (10g2§> .

The process is illustrated in Figure 5.2. Note that we want > logg(é%) samples to be assured

equal to

that a RSSP is solved with high probability, but we include that in the constant C. n

Lemma 7 (Representing a single layer). Consider a randomly initialized 05 quantized two layer
neural network of the form g(x) = [No(Mx)] with x € R%. Assume 0y < §;. Say the precision
of weights of g is reduced to to § such that § < §;. Let g(z) = [(S ® N)To((T ® M)x)] be

the pruned network for a choice of pruning matrices S and T. Let fw(x) = [Wx] be a single
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CHAPTER 5. LOTTERY TICKETS, WEIGHT QUANTIZATION AND PHASE TRANSITION

2 log, (%)

T Z1

T3 I3

Figure 5.2: Representing a single neuron: Figure on the left shows the target network, where as Figure
on the right shows the large network. The colors indicate which part in the target is represented by
which part of the source. For example, the red weight on the left is represented by the red subnetwork
on the right.

layered network of precision 6;. If N has dimension dy x Cdylog, 6% and M has dimension
Cd, log, 5% X dy then with probability

1— d1d2 O <<10g2 5%) ) s

VW e Sir® 3 8T: fiw(x)=g(z)

=

Proof. Assume weights of g are of precision 6. We first prune M to get a block diagonal matrix

M/

wy 0 .- 0
M = | .2 . |, where u; € RO0E: 57
_O O udl_
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CHAPTER 5. LOTTERY TICKETS, WEIGHT QUANTIZATION AND PHASE TRANSITION

Thus, T is such that M’ = T ® M. We also decompose N and S as following

T T T T
S11 0 Sigy Vii 0 Vig
T T T T
s o .. S V e V 1
2,1 2,d 2,1 2,d Clogy >
S = 1, N= "1, wherev;;,s;; € R %252,
T T T T
_Sd2,1 o Sd2,d1_ _de,l o de,dl_

Now note that pruning u; and v; ; (using s; ;) is equivalent to Lemma 6. Hence it’s simply an
application of Lemma 5 d;ds times. Hence the event in assumption of Lemma 7 occurs with a

probability didop — (didy — 1), by a union bound B, Equation B.4, which is equal to

I\
1— d1d2 O <<10g2 5—2) > .

The process is illustrated in Figure 5.3 Note that we want > 10g2(5i2) samples to be assured

that a RSSP is solved with high probability, but we include that in the constant C. m

Proof of Theorem 6. Now we can see that Theorem 6 can be proved by applying Lemma 7
layer wise, where two layers of the large network represent one layer of the target. Let the total

number of parameters in the target network be NV, i.e.,

-1
Ny =) didis1.
1=1

Then the event in assumption of Theorem 6, by union bound B, Equation B.4, occurs with a

probability N;p — (N; — 1), where which is equal to

1\
1-NO (log2 ﬁ) .
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Figure 5.3: Representing a Layer: Figure on the left shows the target network, where as Figure on
the right shows the large network. The colors indicate which part in the target is represented by which
part of the source. For example, the red weight on the left is represented by the red weights on the
right.

5.2.2 The Brukholz Construction

In this section, we adapt construction by [Bur22| to prove Theorem 7. The process is illustrated

in Figure 5.4.

Lemma 8. Consider a randomly initialized 05 quantized two layered neural network g(x) =
No(Mx) with x € R%, whose weights are sampled uniformly from {—1,...,—=§,0,...,1}.
Assume 0o < 1. Say the precision of weights of g is reduced to to § such that 6 < oy. Let
() = [(SON)To((T ® M)x)| be the pruned network for a choice of pruning matrices S and

T. Let
[Wx]

[Wx]
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is a single layered network, 61 quantized network where Wx is repeated 210g2(5i2) times and
W has dimension dy X dy. If N has dimension 2ds log, 5% x Cdy log, 5% and M has dimension

Cd, log, 5% X dy then with probability
1 1\~

VW e SH 2 3 8§ T: fw(x)=g(z).

we have

Proof. Assume weights of g are of precision §. We first prune M to get a block diagonal matrix

M/

u 0 --- 0
0 w --- 0

M= | .2 |, where u; € RC o825
-0 0 ud1_

Thus, T is such that M’ = T ® M. We also decompose N and S as following

S, N,
s—| > N = NQ
L 210g2(%)_ L ZIOgQ(%)_
where
(si1) (810, ) (Vi)k (Via )k
S _ (830K =+ (S3.4)k N — (Vi o (Vo k
k= . . . ) - . . . )
_(552,1)16 T (SdTQ,dl)k_ _(V§2,1)k T (Vde,dl)k_

and (V@j)k, (Si,j)k € R010g2 5%.

Now note that pruning u; and (v; ;)i (using (s;;)x) is equivalent to Lemma 6. Hence it’s simply

an application of Lemma 5 dyds2log, (6%) times. Hence the event in assumption of Lemma &
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occurs with a probability

1 1\ 7
1 — 2d,ds log, (ﬁ) @) <<log2 §> ) :

using the union bound B, Equation B.4. m

Proof of Theorem 7. Theorem 7 is an application of second step of Lemma 8 for all layers until
we reach the last layer, where copying is not required. The process is illustrated in Figure 5.3.

The event in the assumption of Theorem 7 happens with probability

1 1\ 7
1-— Nt 210g2 (ﬁ) O ((10g2 6—2) )

2log, (5

X
Y
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Figure 5.4: The Figure shows representation of first two layers of a network in Theorem 7. Figure
on the left shows the target network, where as Figure on the right shows the large network. The colors
indicate which part in the target is represented by which part of the source. For example, the red
weight on the left is represented by the red weights on the right.
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Lower Bound by Parameter Counting

Here we prove Theorem 8 which follows by a parameter counting in the discrete setting.

Proof of Theorem 8. Two matrices represent the same function iff all their elements are the

same. Therefore, the number of functions in F is

9 @
i)

Also, the number of functions in G is 2%. Now for the assumption of Theorem 8 to hold, we

d2
2
20‘21)(5—1—1)

2
— a > log, p + d*log, <S+1>.

must have

5.3 Future Directions

5.3.1 More on Weight Quantization

The applications of theoretical results on NPP goes well beyond what we have covered in this
thesis. For example, if Theorem 2 can be proved for arbitrary distribution rather than uniform
distribution, then we can get rid of the undetermined constant in Theorem 6 which would
make our bound much better. This requires estimating the moment integrals in Theorem 2 for
different distribution, which is a challenge for future works. Also we conjecture the existence
of a phase transition in SLTH. Given a large network and a target network, there exists a
parameter, which depends on the size and the precision of weights of the large network. The
probability of approximating/representing the target network shows a sharp jump around a
critical value of this parameter in the limit of large networks. Proving this conjecture requires

finding the optimal condition for approximating/representing the target network with a given
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network, which is again a challenge for future works. Finally, one of the criticisms of this work
can be - Why go for exact representation, when one only cares about an e approximation.
Handling approximation in the discrete setting is difficult, but we think can be done using
the analysis of NPP on [BCPO01]. We also leave that to future work. Overall, we have shown
that theoretical results on NPP have the potential to serve as extremely powerful tools in the

analysis of SLTH, and it’s a great opportunity for the future works to leverage these results.

5.3.2 The Hopfield Network Version

Hopfield networks are models of associative memory, constructed by John J. Hopfield in early
1980s, for which he received Nobel Prize in Physics in 2024. Hopfield network is simply a fully

connected glassy Ising model (also known as Curie-Weiss Models) with the Hamiltonian

H = Z JijSi8;,
i#j
with s; € {—1,1} and J;; = Jj;. Note that since all the couplings are different (with possibly
different signs), this system has very complex energy landscape with many degenerate ground
states. The dynamics of this system at a low temperature brings the system into one of the
nearest ground states, where it gets stuck for a long time. A Hopfield network is shown in Figure

5.5. Hopfield asked the following question, given a set of m configurations {1, €2, .. ¢}

/T
SO

Figure 5.5: A Hopfield network

with £€%) = {fz(k) N ., where N is the number of spins in the system, can we change .J;;’s such

that the configurations {&M), €@ ... €™} become the ground state of the system. He found
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Ut

Figure 5.6: Pruning a Hopfield Network

the assignment of the J;;’s which does exactly that:
k) o (k
Jij = Zfl( )gj(' )
k=1

Hence this is a model of associative memory- the system can remember the states &*’s, and
recall them when starting from a nearby configuration. We now ask the following question
related to Hopfield networks. Consider two Hopfield networks, one much larger than other, as
shown in Figure 5.6. All the couplings J;;’s of small network and J;;’s of the large network are
randomly initialized. Say smaller one has N nodes, choose any N nodes of the bigger one. Can
the couplings Jj;’s of the large network be pruned (set to zero) such that the chosen N nodes
in the bigger network has the same set of ground states as the smaller one? This is basically
the Hopfield version of SLTH question. This question is inspired from the pruning process in
biological neural networks. It has been observed that in biological brains, a lot of connections
are made during the early developmental phase, and then the connections are pruned as the
brain develops further. The question we ask is a Direct model of this process, and we leave it

to future works to tackle this question.
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Chapter 6

CONCLUSION

6.1 Discrete Random Subset Sum Problem

The theoretical analysis of Random Subset Sum problem (RSSP) is an important area in
the field of Computer Science and High dimensional probability. The previous results by
[Lue98| state that RSSP on the set { X1, Xs,... X, } where X; ~ U[—1,1] can be solved with
high probability if n > C'log (%), within an error e. This result played a major role in the
previous analysis of Strong Lottery Ticket Hypothesis (SLTH) [Pen+20|, [Bur22|. Leveraging
the analysis by [BCPO01|, we prove results on RSSP in the discrete setting. Consider RSSP
on the set {Xi, Xo,...X,} where X;’s are sampled uniformly from {—1,...,6 ..., 1} where
0 << 1. We show that with probability converging to 1 as n — oo, the RSSP can be solved
exactly if n > C'log (%) This result plays a major role in our analysis of SLTH in the discrete

setting.

6.2 SLTH and Weight Quantization

Previous results on SLTH dealt with weights of the neural networks sampled from some contin-
uous interval. However, weights in a computer are always represented with finite precision. To
study the effects of quantization, we introduced a quantized formulation of the Strong Lottery
Ticket Hypothesis (SLTH), addressing a more realistic setting where neural network weights

have finite precision. By reducing the problem to the Number Partitioning Problem (NPP)
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and leveraging known phase transition results, we established tight upper bounds on the size
and precision requirements for a randomly initialized network to represent a given target net-
work exactly through pruning. Our analysis basically provides a relationship between precision
of weights and required size of a large network that must hold in order for that network be
prunable to a given target network. Notably, one of our constructions achieves exact size re-
quirements (up to the first layer) without arbitrary undetermined constants, which is new.
This also shows that the theory of Number Partitioning Problem provides powerful tools to
study the theory of SLTH. The asymptotic matching of the forms of upper and lower bounds
suggests the optimality of our approach. Our work highlights the fundamental relationship
between network overparameterization, weight precision, and the existence of sparse, trainable
subnetworks. Future work includes extending these results to more general architectures, re-
laxing precision assumptions, and analyzing approximate representations. Understanding the
trade-offs between quantization, pruning, and expressivity remains a promising direction for

both theory and practical network compression.
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Appendiz A

SADDLE POINT APPROXIMATION

In this chapter, we give a short overview of the Saddle Point Approximation. The Saddle
Point Approximation is a powerful tool to get the asymptotic behavior of an Integral which
are dominated by the maxima of the integrand, and is frequently used in Statistical Physics.

Consider an integral of the form

I= /b dz f(x) ™), (A.1)

where f and g are real functions and n > 0 and g is bounded. The exponential function
increases very rapidly, so for large n, the major contribution to the integral only comes from
where ¢g(z) is maximum. Say we care about the integral in the n — oo limit. The idea is to
approximate the integral by the biggest peak of g. Let xy be the global maxima of g. Consider
the change of variable

.CE:.TO—Fi.

vn

If g is analytic, then ng(x) it can be expanded around z, as

1 2 1 y3g///<x0> 4
- - Y920 1 oy,
ng(x) = ng(wo) + 557" (o) + N (v°)
Note that ¢'(z¢) = 0 as x is a maxima. This is a good approximation of g around its maxima,

and for regions far from maxima does not matter as the contribution to the integral is negligible.

Hence we have

3
ng(z) _ ong(xo) ,39%9" (o) (1 y°g" (o) oM ) A2
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We also expand f as

yf (o) +y2f”(:ro)
f(xo)v/n — f(wo)n

)=t (14 +00) (A3)

Substituting Equations A.2 and A.3 into Equation A.1 we get

f(xo)eng(“")) b2 > > Pr(y)
I(n) = 2292 dy e¥'9"@)/2 1 4 ’
() N ; N

where Py (y) are polynomials in y. It can be shown that Py (y) are odd polynomials if & is odd
and Py (y) are even polynomials if k is even. Since the integral is completely by it’s maxima,

we can extend the domain to (—oo,00). Hence we get

I(n) ~ JC(L\/{LQ(%) - dy ev’d"@)/2 . (1 + Z Pk(ﬂ))
n —o0

B f(zg)en9(@o) 27 2. Cop
“ T e )

Where Cy,’s are some coefficients. Hence one can write
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Appendir B

INEQUALITIES

B.1 Markov’s Inequality

Theorem 9. For a non-negative, integer-valued random variable X we have

P(X > 0) < E[X]. (B.1)

B.2 Cauchy-Schwartz inequality

Theorem 10. If X > 0 is a random variable with finite variance, then

P(X > 0) > (E@)]Q' (B.2)

B.3 Hoeffding’s inequality

Theorem 11. Let X1, X, ..., X, be independent random variables such that a; < X; < b;

almost surely. Consider the sum of these random variables,

Sn=X1+Xo+---+X,.
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Then Hoeffding’s theorem states that, for all t > 0,

P(Sn — E(sn) > t) < exp <_ Zy_l(QbiQ— az-)2>

B(1S, — Elsn)| 2 1) < 20 (~=r o).

Zi:l (bi -

B.4 Union Bound

Theorem 12. For any events Ay, As, ..., A, we have

P (ﬁ AZ) > max (O, Zn:]P’(Ai) —(n— 1)) .
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Appendix C

REJECTION SAMPLING

In this chapter, we describe the Rejection sampling algorithm. It is a simple yet powerful
Monte Carlo technique to draw independent samples from a target probability density f(x),
using samples from an easier “proposal” density g(x). It is extremely useful in cases, where
the known distribution is not normalized. It proceeds in two stages—proposing a candidate,
then accepting or rejecting it—so that the retained points are distributed according to f. We

require a constant M > 1 such that
f(x) < Mg(x)

for all z. Equivalently,

M = sup@.

+ g(z)
First we discuss the algorithm, and then we go into the mathematical details to understand

how the algorithm works. The algorithm to generate N samples is:
1. Propose z* ~ g(x).

2. Draw u ~ Uniform(0, 1), independently.

3. Accept x* if
y e S
g(x*)

)

otherwise reject and return to step 1.
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To see why the accepted samples follow f, consider the joint density of (X*, U):
plr,u) =g(x) x1, 0<u<Ll

The marginal density of accepted x is

flz)  _ f(2)
M g(x) M

f(@)/(Mg(z))
paccept(x) = / g(l’) du = g(&?)
0

The total acceptance probability is

P(accept) = /paccept(x) dr = / % dr = %

Conditioning on acceptance gives

p(z | accepted) = % = f(x).

Thus each accepted sample is exactly from the target density f. The expected acceptance rate
is
Placcept) = 1
accept) = —,
PV =

so efficiency improves as M approaches 1.

A discrete analogue for a target mass function f(i) on ¢ € {1,..., K} uses a proposal g(i) and

a constant M > max; f(i)/g(i). The steps are:

1. Draw * ~ g.
2. Draw u ~ Uniform(0, 1).

3. Accept if

u <

The same argument shows the accepted ¢* follow the distribution f. Rejection sampling is
conceptually simple and provides exact (unbiased) samples from f, but it can be inefficient if

M is large or difficult to bound, especially in high dimensions.
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