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Abstract

Artificial neural networks have demonstrated remarkable utility across various domains; how-

ever, their training often demands significant computational resources. The Lottery Ticket

Hypothesis suggests that within every fully connected neural network, there exists a smaller

subnetwork that can be trained from scratch to achieve similar performance. This thesis builds

on recent work related to the Strong Lottery Ticket Hypothesis (SLTH), an even stronger con-

jecture, which states that sufficiently overparameterized randomly initialized neural networks

contain sparse subnetworks that will perform as well as a small trained network on a given

dataset—without any training. This has motivated a considerable amount of research trying

to prove that a given smaller network can be approximated by pruning a larger network. While

previous studies have tried to answer how large a network needs to be to approximate a given

target network through pruning, we go further by investigating both the required network size

and the precision of its weights. We assume a target network of a given size, whose weights

are represented with a certain precision, and a large a network whose weights are represented

with more precision than the target, and explore the relationship that must hold between size

and precision of the large network, that must hold in order for the larger network to represent

the target network. In one of our results, the required network size is almost exact, mostly free

of any arbitrary constants unlike other pervious works. Additionally, we show that the upper

bound on the parameter count required to approximate a given network matches the lower

bound asymptotically for a one layered network by parameter counting argument, hinting at

the optimality of the solution.
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Chapter 1

Introduction

Artificial Neural networks have been extremely successful across various domains in the past

few decades. A large part of this success has been the increase in computational power and

development of efficient training algorithms. This has allowed training of deeper networks,

which capture the hidden patterns in a huge corpus of data. However, as the field advances,

people plan to train even bigger networks, and hence finding efficient algorithms for training

and inference remains an active area of research. Neural networks are highly over parametrized

functions. During training, these parameters are adjusted such that the network captures

patterns in data, so that it can generalize to data that it has not seen before. One of the

compression techniques, known as pruning, involves setting parameters of the network, which

are small in magnitude to zero. It has been observed that sometimes, even more than 95% of

the parameters can be set to zero without any significant drop in performance. But if one tries

to do the reverse, i.e., train a sparse network, it does not works well. Hence it was a big surprise

to the community when [FC18] published a conjecture known as the lottery ticket hypothesis,

which states that every dense network contains a sparse subnetwork that can be trained from

scratch, and performs equally well as the dense network. They also gave experimental validation

to their claim. Further works by [Zho+19], [Ram+19], [DK21] and [Wan+19] motivated an

even stronger version of this hypothesis, called the Strong Lottery Ticket Hypothesis (SLTH).

SLTH states that a sufficiently large neural network contains a subnetwork that will perform

well on a dataset without any training. The strong lottery ticket was proved by [Mal+20]. They

also provided bounds on how large this network should be to approximate the performance of

a network of a given size. These bounds were later improved by [Pen+20], [Bur22]. These
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Chapter 1. Introduction

results rely on reducing the problem to a bunch of Random Subset Sum (RSS) problems and

using results on the RSS problem [Lue98] to obtain bounds on the size of the large network.

All the previous theoretical works in the SLTH space assume a large network whose weights are

randomly initialized, sampled from some continuous interval. Then they try to prune this

network in certain ways to approximates a given target network. Our thesis develops on these

works. Our analysis heavily relies on the theory of Number Partitioning Problem (NPP). One

of the striking features of NPP is that it has a phase transition [Mer98], [BCP01]. Through

this thesis, we show how these results on NPP can serve as powerful tools to study SLTH.

1.1 Our Contribution

In this work, we add a new dimension to the strong lottery ticket problem-Weight Quan-

tization. We assume a target network whose weights are sampled from a discrete set like

Sδ1 = {−1, . . . , δ1, 2δ1, . . . , 1}, where δ = 10−k1 for some k1 ∈ N and a large network whose

weights are sampled from say Sδ2 = {−1, . . . , δ2, 2δ2, . . . , 1}, where δ = 10−k2 , with k2 > k1.

The number δi defines the precision of the network. The larger network can be quantized,

i.e., the precision of it’s weights can be decreased (by removing less significant digits from

after the decimal place: 0.4326 → 0.43, for example) and it can then be pruned. We then

ask what relationship must hold between the precision size of the large network such that it

can be pruned the given target with high probability. This is more realistic, as computers

always represent numbers with finite precision. Moreover, quantization is another method of

compressing neural networks, which involves decreasing the precision with which the weights

are represented. It has been observed that one can quantize a neural network to a great ex-

tent without loosing much performance. We further assume that after certain operation, the

precision is set to δ again. For example, in a network, we may assume that output from any

neuron of each odd layer is of precision δ. This may happen at different stages in the target

and the large network, and may vary from result to result. This assumption was made for

theoretical simplicity and we leave it to the future work to deal with a more general case. We

adapt constructions from [Pen+20] and [Bur22] but starting in a quantized setting, we reduce

the problem to solving a bunch of Number Partitioning Problem (NPP), which is an equivalent

problem to RSS. NPP is one of the most important problems in the theory of NP-completeness

8



Chapter 1. Introduction

and is known to exhibit a Phase transition [BCP01]. Using known results on NPP, it is easier

to deal with quantized system. Instead of approximating the network output within an error

ϵ, we go for exact representation, and generalizing our results to account for errors is another

challenge for future works. Informal statements of these results is given.

Theorem (Informal version of Th. 6). A randomly initialized neural network of precision δ2,

width O
(
d log2

(
1
δ2

))
and depth 2l of can be pruned to any network, with less precision, of

width d and depth l with high probability.

Theorem (Informal version of Th. 7). A randomly initialized neural network with width

2d log2

(
1
δ2

)
(except 1st layer whose width is O

(
d log2

(
1
δ2

))
) and depth l+1 can be pruned to

any network, with less precision, of width d and depth l with high probability.

In the latter of these results, note that the required network size of the large network is exact

except for it’s first layer, free of any undetermined constants unlike other pervious works. We

also provide lower bounds on the required parameter count of a network to represent a two

layered network. We do this by a parameter counting argument similar of [Pen+20], but in

quantized setting. The informal statement is given below.

Theorem (Informal version of Th. 8). There exists a 2 layered network with d2 parameters,

which cannot be represented by a large neural network of precision δ2 with high probability unless

it has Ω
(
d2 log2

(
2
δ2

))
parameters.

Note that the upper and lower bounds match asymptotically, indicating the bounds are optimal

in some sense. In summary, our contribution is 3-folds:

• We provide the relationship must hold between the precision and the size of the large

network such that it can be pruned to the given target network with high probability.

• In one of the results, the required size of the large network is exact, free of undetermined

constants, except for the first layer.

• Upper and lower bounds on the required size to represent a network match asymptotically,

indicating the bounds are optimal in some sense.
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Chapter 2

Neural Networks

2.1 What are Neural Networks?

Modern machine learning focuses on developing systems that learn from data by developing

generative, predictive, or classification models through the analysis of complex patterns in

data. In real world tasks, manually encoding intricate patterns is often infeasible. Modern

machine learning addresses this challenge by leveraging highly overparameterized models that

learn through loss optimization over given datasets. Machine learning has diverse applications

across numerous fields, with notable examples including machine translation, large language

models, speech recognition, and image generation. Much of its success stems from a subfield

known as deep learning. Emerging in the 1980s, deep learning involves models that distribute

computation across multiple layers to capture underlying complicated patterns in data. Neural

networks were among the first examples of such learning systems, laying the foundation for

many modern advancements in the field. neural networks by inspired by biological neural

networks in animal brains both on terms of structure and function. In this chapter we describe

what neural networks are and how they work. In this section we describe the construction of

neural networks and in the next section we describe Backpropagation, an efficient algorithm

to train neural networks. To construct neural networks we first describe a "neuron", which is

the fundamental unit of a neural network. Neurons are functions f : Rn → R of the form

f(x1, x2, ..., xn) = σ

(
n∑

i=1

wixi

)
, (2.1)
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Chapter 2. Neural Networks

w1

σ (
∑

wixi)

w2

wn−1

wn

x1

x2

xn−1

xn

Figure 2.1: Pictorial representation of a neuron.

where σ : R → R is known as the non-linear activation function. A neuron is pictorially

represented in Figure 2.1. A neuron essentially takes a linear combination of it’s n inputs,

weighted by wi’s, and then gives the linear combination as an argument to the non linear

activation function σ to obtain it’s output. The parameters wi’s are known as weights. It is

usual to think of these numbers wi’s as numbers associated to the connections (the lines that

bring the inputs to the neuron shown in Figure 2.1). We will be using phrases like "weight

of the connection" for wi’s frequently. The commonly used non-linear activation functions are

the sigmoid function defined as

σ(x) =
1

1 + e−x
.

The sigmoid function is plotted in Figure 2.2. As shown in the plot, the sigmoid function

compresses its input into the interval [0, 1]. It is a monotonically increasing function that

approaches 1 as the input becomes very large. Other common choices are σ(x) = tanh(x) and

σ(x) = ReLU(x) = max{0, x} are also shown in Figure 2.2. Our model neuron is somewhat

Figure 2.2: Sigmoid, Tanh, and ReLU activation functions.

similar in structure and function to a biological neuron. A biological neuron aggregates signals

from other neurons through various connections, each with a strength that can change over

time through complex bio-mechanisms. These strengths determine which signals are more

important. If the aggregate input exceeds a certain threshold, the neuron "fires," transmitting
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Chapter 2. Neural Networks

signals to other neurons. Similarly, our artificial neuron weights incoming signals using wi’s

and produces an output based on an increasing function of the aggregate input. Later, we

will allow the wi’s to change during a process called training, enabling the neuron to capture

meaningful patterns in the data. Having defined a neuron and motivating it’s structure, we

now construct a network of these neurons, called the feed forward neural network. We stack

these neurons in layer and connect them together as shown in Figure 2.3. The neurons in the

Input Layer Output Layer
Hidden Layer

Figure 2.3: A feed-forward neural network.

Input layer take real number inputs and pass them without any change to the neurons in the

next layer. A neuron only gives one real number as an output, multiple outputs shown in the

figure mean that the neuron a giving the same output to all the neurons in the next layer.

The neurons in the next layer, all reviving d0 inputs, where d0 is the number of neurons in

the input layer, operate according to the rule given in equation 2.1. The neurons then pass

outputs to the next layer, and the computation goes on. There can be as many hidden layers

in between input and output layers as required. The signal finally reaches the output layer,

giving dℓ real numbers, (where ℓ is the total number of layers and dℓ is the number of neurons

in the output layer) which is the output of the network. Note that layers are numbered as

(0, 1, ..., ℓ). Hence, a neural network defines a function from Rd0 → Rdℓ , parametrized by the

weights of all the neurons. We represent the input ∈ Rd0 as x = (x1, x2, ...xd0). The operation

performed between the zeroth layer and the first layer can be represented by W1x, where W1

is the matrix whose ijth entry is the weight of connection connecting the jth neuron in the

zeroth layer and ith neuron in the first layer. Using this compact notation, a neural network

can be defined as

12



Chapter 2. Neural Networks

Definition 1. An neural network is a function f : Rd0 → Rdl defined as

f(x) = Wlσ(Wl−1...σ(W1x)), (2.2)

where Wi has dimension di×di−1, x ∈ Rd0, and σ : R → R is the nonlinear activation function

and v = σ(x) means vi = σ(xi).

Having defined the neural network, we now come to the question of what to do with it. Con-

sider some high dimensional data {(xi,yi)}Ni=1 where xi ∈ Rd0 and yi ∈ Rdℓ . Suppose we

empirically want to determine the relationship between xi and yi. A neural network is a

highly parametrized function f : Rd0 → Rdℓ . In that case we would like to figure out the set

of weights of the neural network such that it best represents the relationship between xi and

yi. Here one can also see the significance of non linear activation functions. In the absence of

an activation function, the neural network is just a composition of linear functions and hence

is a linear function it self. So it can fit only linear function. Adding a non linearity to the

design makes it much more powerful. By adding a non linear activation function, the class of

functions the neural network can represents increases drastically. Infact it can be shown that

a neural network can represent any continuous function, with minimal requirements on what

activation function you choose. Given {(xi,yi)}Ni=1, one of the natural things to do is to find

the set of weights such that

C =
1

2N

N∑
i=1

(f(xi)− yi)
2 (2.3)

is minimum. C is known as the cost, or the loss function. The specific form in Equation 2.3 is

known as the least square loss. This form is a choice, and many other choices of loss functions

exist. Given {(xi,yi)}Ni=1, C is a function of all the weights of the network and we seek to

minimize C over all possible values of the weights. This is a high dimensional optimization

problem can can be quite challenging in general. The process of minimize C over all possible

values of the weights is known as training in the language of machine learning.

13



Chapter 2. Neural Networks

2.2 The Backpropagation Algorithm

In this section we discuss an efficient gradient based algorithm to train a neural network. A

neural network of the form given in Equation 2.2 will be used. The weight connecting the ith

neuron of the kth layer and jth neuron of (k − 1)th layer will be denoted by wk
ij. The output

given by the ith neuron of the kth layer will be denoted by aki . Hence we have

aki = σ

(∑
j

wk
ija

k−1
j

)
.

We will also denote the input received by the ith neuron of the kth layer by

zki =
∑
j

wk
ija

k−1
j .

Let C be the cost function of the network. C need not be of the form 2.3, but we will assume

that the cost function can be written as an average of the costs of individual training samples,

i.e., C = 1
n

∑
xCx. Hence we will compute gradient of C with respect to a single training

example and it can then easily be generalized to the entire dataset. We will also assume

that C can be written as a function of the outputs from the neural network. Let the dataset

{(xi,yi)}Ni=1 be given. We define the error in the ith neuron of the kth layer δki as

δki =
∂C

∂zki
.

Fist we compute the error of the output layer δLk , where L denotes the last layer. We have

δLk =
∂C

∂zLk
=

n∑
i=1

∂C

∂aLi

daLi
dzLk

,

where n is the number of neurons in the last layer. The above equation gives

δLk =
∂C

∂aLk
σ′(zLk ). (2.4)
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Next we compute the error in the ℓth in terms of (ℓ+ 1)th layer. Let the number of neurons in

the (ℓ+ 1)th be m. Consider

δℓk =
∂C

∂zℓk

=⇒ δℓk =
m∑
i=1

∂C

∂zℓ+1
k

∂zℓ+1
k

∂zℓk

=⇒ δℓk =
m∑
i=1

δℓ+1
i wℓ+1

ik σ′(zℓk). (2.5)

Now we compute ∂C
∂wℓ

jk
. We have

∂C

∂wℓ
jk

=
∂C

∂zℓk

∂zℓk
∂wℓ

jk

=⇒ ∂C

∂wℓ
jk

= δℓja
ℓ−1
k . (2.6)

Equations 2.4, 2.5 and 2.6 are called the equations of Backpropagation. Now our goal is to

minimize C with respect to wk
ij for the given dataset, and hence we want to find it’s gradient.

The gradient is calculated using the equations of Backpropagation. Note that the partial

derivative of C with respect to wk
ij is computed layer by layer, starting from the last layer,

and hence the name backpropagation. Having calculated ∇C, we can change wk
ij by simply

taking small steps in the direction negative gradient, also known as gradient descent. The

algorithm goes as follows - First the entire dataset is given as input to the network and the

cost is calculated. Then using the equations of backpropagation, the gradient of C

∇C =


∂C
∂w2

11...
∂C

∂wℓ
nm


is calculated. The weights are the updated as

wk
ij → wk

ij − η
∂C

∂wk
ij

,

or in other words, if w denotes vector containing all the weights as elements, then

w → w − η∇C. (2.7)
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Chapter 2. Neural Networks

This process is repeated until convergence, and one round is known as an epoch. Instead

Figure 2.4: MNIST dataset contains of 60,000 training and 10,000 test samples. We used a batch
size of 64 for training.

of calculating the loss over the entire dataset, one can also divide the dataset into batches,

compute the loss for a batch, update the weights according to 2.7, and then move on to the

next batch. This is known as stochastic gradient descent and is usually preferred over gradient

descent for practical purposes. Figure 2.4 shows some samples from the MNIST dataset, a

collection of images of handwritten images. A neural network was trained to recognize the

digits. A fraction of dataset was kept separately and not used for training for testing the

performance on previously unseen examples. Figure 2.5 shows the training and test losses as

a function of epoch. This shows that neural networks have the capability to capture patterns

Figure 2.5: A neural network with dimensions 784× 128× 64× 10 trained on MNIST.

and generalize to previously unseen data.
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Chapter 3

The Number Partitioning Problem

3.1 Introduction

Many problems in combinatorics are known to exhibit a phase transition. A combinatorial

phase transition is an abrupt change in the qualitative behavior of the problem as an appropri-

ately defined parameter is varied. Well known examples are Erdos and Renyi graphs, k-SAT

problem, etc. In this chapter we discuss phase transition in the Number Partitioning Problem

(NPP). The problems is to partition n integers uniformly sampled from {1, 2, . . . ,M} into two

subsets such that the absolute value of the difference of their sums, is minimized. NPP is one

of Garey and Johnson’s six basic NP-complete problems that lie at the heart of the theory

of NP-completeness, [GJ79]. In the early 1990s, there was a debate weather there is a phase

transition in NPP or not. Fu modeled the problem as an infinite range Ising spin glass with

Mattis-like, antiferromagnetic couplings [Ste89]. He argued that there won’t be any phase

transition. Then, is was found empirically that there is a phase transition in NPP. The control

parameter

κ =
log2M

n

was proposed and it was shown empirically that if κ < κc, then O(2n) number of solutions

exist, whereas if κ > κc, the number of solutions drop to zero. [Mer98], using the tools from

statistical mechanics showed (informally) that there is a phase transition in NPP with κ = 1.

Though informal, Mertens analysis was quite convincing that there is a phase transition in

NPP. The fact that there is a phase transition, along with many other results on NPP were
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proven by [BCP01] formally. These results are central to this thesis, and hence we shall go

through both Mertens and Borgs analysis of the NPP in detail in this chapter.

3.2 NPP by Statistical Mechanics

Consider the set of integers {X1, X2, . . . , , Xn} where Xi is sampled uniformly from {1, 2, . . . ,M}.

Since we wish to solve NPP, it is natural to consider a system with Hamiltonian

H =

∣∣∣∣∣
n∑

i=1

Xiσi

∣∣∣∣∣
where σi ∈ {−1, 1}.

3.2.1 Calculation of the Partition function

We have the Hamiltonian

H =

∣∣∣∣∣
n∑

i=1

Xiσi

∣∣∣∣∣ .
The Canonical partition function (with β = 1

T
) is given by

Z =
∑

σi∈{−1,1}

e−βH

=⇒ Z =
∑

σi∈{−1,1}

exp

(
−β

∣∣∣∣∣
n∑

i=1

Xiσi

∣∣∣∣∣
)

=⇒ Z =
∑

σi∈{−1,1}

∫ ∞

−∞
dx e−|x| δ

(
x− β

n∑
i=1

Xiσi

)
.

Now Fourier expanding the delta function

∫ ∞

−∞
dx eikx = 2πδ(k)

=⇒ Z =
∑

σi∈{−1,1}

∫ ∞

−∞
dx e−|x|

∫ ∞

−∞

dx̃

2π
exp

(
ix̃

(
x− β

n∑
i=1

Xiσi

))
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=⇒ Z =
∑

σi∈{−1,1}

∫ ∞

−∞
dx

∫ ∞

−∞

dx̃

2π
exp

(
−ix̃β

n∑
i=1

Xiσi

)
e−|x|+ixx̃

=⇒ Z =

∫ ∞

−∞
dx

∫ ∞

−∞

dx̃

2π

∑
si∈{−1,1}

exp

(
−ix̃β

n∑
i=1

Xiσi

)
e−|x|+ixx̃. (3.2a)

Now we simplify the term

∑
σi∈{−1,1}

exp

(
−ix̃β

n∑
i=1

Xiσi

)

=
∑

σi∈{−1,1}

n∏
i=1

exp (−ix̃βXiσi) .

Now expand the σi summation and use 2 cos(θ) = eiθ + e−iθ

= 2N
n∏

i=1

cos (βXix̃) . (3.2b)

Now we simplify the term

∫ ∞

−∞
dx e−|x|+ixx̃

=

∫ 0

−∞
dx ex+ixx̃ +

∫ ∞

0

dx e−x+ixx̃

=

∫ 0

−∞
dx ex+ixx̃ +

∫ ∞

0

dx e−x+ixx̃

=

[
ex+ixx̃

1 + ix̃

]0
−∞

+

[
e−x+ixx̃

−1 + ix̃

]∞
0

=
−1

1 + ix̃
+

1

−1 + ix̃

=
1

ix̃− 1
− 1

ix̃+ 1
=

2

x̃2 + 1
. (3.2c)

Now put 3.2a and 3.2b in 3.2c we get

Z =

∫ ∞

−∞

dx̃

2π
2n

n∏
i=1

cos (βXix̃)
2

x̃2 + 1

=⇒ Z = 2n
∫ ∞

−∞

dx̃

π

n∏
i=1

cos (βXix̃)
1

x̃2 + 1
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Put x̃ = tan(y) =⇒ dx̃ = sec2(y) dy,

Z = 2n
∫ π

2

−π
2

sec2(y) dy

π

n∏
i=1

cos (βXi tan(y))
1

sec2(y)

=⇒ Z = 2n
∫ π

2

−π
2

dy

π

n∏
i=1

cos (βXi tan(y)) . (3.2d)

Now let

G(y) =
1

n

n∑
i=1

ln cos(βXi tan(y)).

Hence equation 3.2d becomes

Z = 2n
∫ π

2

−π
2

dy

π
en G(y). (3.2e)

Now we employ saddle point approximation to calculate the partition function Z. Computing

the saddle points of G(y):

G(y) =
1

n

n∑
i=1

ln cos(βXi tan(y))

=⇒ d

dy
G(y) = − 1

n

n∑
i=1

sin(βXi tan(y))

cos(βXi tan(y))
βXi sec

2(y)

=⇒ d

dy
G(y) = − 1

n

n∑
i=1

tan(βXi tan(y)) βXi sec
2(y).

Note that G(y) is zero if y = arctan(π
β
)k for any k ∈ Z. From now on, we consider ai’s, instead

of just being integers, to be an integral multiple of some real number ∆a. If ai ∈ Z, then

∆a = 1. In that case, G(y) is zero if:

yk = arctan

(
π

β∆a
k

)
∀ k ∈ Z.

Now let’s compute the second derivative of G(y):

d2

dy2
G(y) = − 1

n

n∑
i=1

[sec2(βXi tan(y)) (βai sec
2(y))2 + tan(βXi tan(y)) 2βXi sec

2(y) tan(y)]
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=⇒ d2

dy2
G(yk) = − 1

n

n∑
i=1

(
βXi sec

2

(
arctan

(
π

β∆a
k

)))2

=⇒ d2

dy2
G(yk) = − 1

n

n∑
i=1

(
βXi

(
1 +

(
πk

β∆a

)2
))2

.

Note that we need to find the minima of −NG(y), which corresponds to the maxima of G(y).

G′′(y) is negative at yk, confirming that they are the maxima. Now we compute the partition

function by applying saddle point approximation on 3.2e.

Z = 2n
∫ π

2

−π
2

dy

π
exp

(
n G(y0) +N G′(y0)(y − y0) +

n

2
G′′(y0)(y − y0)

2
)
,

where y0 is a maxima. We know that at maxima, G(y0) = G′(y0) = 0. Hence

Z = 2n
∫ π

2

−π
2

dy

π
exp

(
−n

2
|G′′(y0)| |y − y0|2

)
,

Now do this for every maxima and extend the domain to (−∞,∞) as yk = arctan
(

πk
β∆a

)
∈(

−π
2
, π
2

)
:

Z = 2n
∑
k∈Z

∫ ∞

−∞

dy

π
exp

(
−n

2
|G′′(yK)| |y − yK |2

)
=⇒ Z =

2n

π

∑
k∈Z

√√√√√ 2π

n 1
n

∑n
i=1

(
βXi

(
1 +

(
πk
β∆a

)2))2

=⇒ Z = 2n
√

2

π

∑
k∈Z

1√∑n
i=1

(
βXi

(
1 +

(
πk
β∆a

)2))2

=⇒ Z = 2n
√

2

π

∑
k∈Z

1√∑n
i=1X

2
i β

(
1 +

(
πk
β∆a

)2)
=⇒ Z = 2n

√
2

π
∑n

i=1Xi

∑
k∈Z

(β∆a)2

β ((β∆a)2 + π2k2)

=⇒ Z = 2n

√
2∆a2

π
∑n

i=1Xi

∑
k∈Z

(β∆a)

(β∆a)2 + π2k2
.
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Now using the Identity ∑
n∈Z

x

x2 + n2π2
= coth(x)

we get

Z = 2n

√
2∆a2

π
∑

j X
2
j

coth(β∆a).

Calculation of Average Energy and Entropy

The free energy of the system is given by

F = − 1

β
ln(Z)

=⇒ F = − 1

β
ln

(
2n

√
2∆a2

π
∑

j X
2
j

coth(β∆a)

)
.

The average energy ⟨E⟩ is given by

⟨E⟩ = − ∂

∂β
ln(Z)

=⇒ ⟨E⟩ = ∆a
2n
√

2∆a2

π
∑

j X
2
j
(coth2(β∆a)− 1)

2n
√

2∆a2

π
∑

j X
2
j
coth(β∆a)

=⇒ ⟨E⟩ = ∆a
coth2(β∆a)− 1

coth(β∆a)
.

The entropy can be calculated as

F = ⟨E⟩ − TS

=⇒ S = β(⟨E⟩ − F )

=⇒ S = β

(
∆a

coth2(β∆a)− 1

coth(β∆a)
+

1

β
ln

(
2n

√
2∆a2

π
∑

j X
2
j

coth(β∆a)

))

=⇒ S = β∆a
coth2(β∆a)− 1

coth(β∆a)
+ n ln 2 +

1

2
ln

2∆a2

π
∑

j X
2
j

+ ln(coth(β∆a))

=⇒ S = n ln 2 +
1

2
ln

2∆a2

π
∑

j X
2
j

+ S̃(β∆a).
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Here S̃(β∆a) is the Temperature-dependent part of the entropy. Now we define

κc(n) = 1−
ln(π

6
n)

2n ln 2
, κ =

ln
(

3
∆a2

1
n

∑
i X

2
i

)
2n ln 2

.

Hence the entropy can be written as

S = n ln 2(κ− κc) + S̃(β∆a).

3.2.2 Phase transition

For κ < κc, and at T = 0, entropy is extensive, and the corresponding energy is zero, hence an

exponential number of partitions are expected to exist.

For κc > κ, we notice that N ln 2(κ− κc) is negative. But Entropy cannot be smaller than ln 2

for our discrete system, hence the temperature-dependent part S̃(β∆a) must contribute. Also

notice that κc > κ implies

1−
ln(π

6
n)

2n ln 2
>

ln
(

3
∆a2

1
n

∑
i X

2
i

)
2n ln 2

=⇒ 2n ln 2− ln
(π
6
n
)
> ln

(
3

∆a2
1

n

∑
i

X2
i

)

=⇒ 2n ln 2 > ln

(
π

2

1

∆a2

∑
i

X2
i

)

=⇒ 2−n > ∆a

√
2

π
∑

i X
2
i

.

Or in other words, ∆a = O(2−N). Now we shall see that in this regime contribution from

S̃(β∆a) cannot be neglected. Consider the expansion of S̃(β∆a)

S̃(β∆a) = ln

(
1

β∆a

)
+ 1 +O((β∆a)2).

To deal with this contribution, we introduce an effective zero temperature T0, beyond which

the system cannot be cooled. We can estimate this effective zero from minimum entropy

S = n ln 2(κ− κc) + S̃(β∆a) = ln 2
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=⇒ ln 2 ≈ n ln 2(κ− κc) + ln

(
1

β0∆a

)
=⇒ T0 = 2 ∆a 2n(κ−κc)

=⇒ T0 = 2−n

√
2π
∑
i

X2
i .

For κ > κc, the approximate energy

E0 = T0 = 2−n

√
2π
∑
i

X2
i .

Which is finite, and hence we expect the number of perfect partitions to drop to zero, hence

we have a phase transition. Note that as n → ∞, κc → 1. This analysis, although not formal,

is considered one of the major significant developments in the theory of NPP. It was the first

to convincingly argue that there is a phase transition in NPP. Now we move in to analysis by

[BCP01], which formalized these ideas.

3.3 Number Partitioning Problem: Formal Results

In this section, we describe the formal analysis of Phase transition in NPP by [BCP01]. We

start with some definitions and then we state the relevant results.

Definition 2. Let X = (X1, X2, . . . , Xn) be a set of integers sampled uniformly from the set

{1, 2, 3, . . . ,M}. Pn is the probability measure induced by random variables X. The Number

Partitioning Problem is defined as the problem of finding a partitioning set σ = (σ1, σ2, . . . , σn)

with σj ∈ {−1, 1} such that |σ · x| = ℓ for some given integer ℓ (called target).

For a given instance of Number Partitioning Problem, the event that “
∑n

i=1 Xi is even” will be

denoted by En, where as the event that the sum is odd will be denoted by On.

Definition 3. Let dn denote the optimum (minimum) discrepancy of X over all σ:

dn = dn(X) = min
σ

(|σ ·X− ℓ|).

A partition is called perfect if dn ≤ 1.
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It is clear that if
∑n

i=1Xi and ℓ are of same parity (both even or both odd), then a partition

is perfect if dn = 0 otherwise a partition is perfect if dn = 1.

Definition 4. For a number partitioning problem with n integers sampled from {1, 2, . . . ,M},

κn is defined as

κn =
log2M

n
.

We will also we using a more detailed parametrization log2M = κnn with

κn = 1− log2 n

2n
+

λn

n
. (3.1)

Definition 5. Given an instance of Number Partitioning Problem X = (X1, X2, . . . , Xn) with

a set of size n and a target ℓ, Zn,ℓ denotes the number of exact solutions to the NPP, i.e.,

Zn,ℓ =
∑
σ

I(|σ ·X| = ℓ).

3.3.1 Statement of the Results

Theorem 1. Let log2M = κnn, and assume the there exists limn→∞ κn = κ ∈ [0,∞). Then

lim
n→∞

Pn(∃ a perfect partition) =

1 if κ < 1

0 if κ < 1.

Theorem 2. Let C0 > 0 be a finite constant, let M = M(n) be an arbitrary function of n, let

γn =
1

M
√
2πncM

where

cM = E
(
X2

M2

)
=

1

3
+

1

2M
+

1

6M2
,

and let ℓ and ℓ′ be integers. Then,

E[In,ℓ] = γn

(
exp

(
− ℓ2

2nM2cM

)
+O(n−1)

)
.
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Furthermore

E[In,ℓIn,ℓ′ ] = 2γ2
n

(
exp

(
−ℓ2 + (ℓ′)2

2nM2cM

)
+O

(
1

n

)
+O

(
1

nγn2n

))
+

γn
2n

(δℓ+ℓ′,0 + δℓ−ℓ′,0) exp

(
−ℓ2 + (ℓ′)2

2nM2cM

)

if ℓ and ℓ′ are of the same parity, i.e., both odd or both even, while E[In,ℓIn,ℓ′ ] = 0 if ℓ and ℓ′

are of different parity.

3.3.2 Integral representation and moment estimates

In this section we prove Theorem 2. Estimates of moments of the integral representation of

Zn,ℓ are the key ingredients in the proving the main results. Zn,ℓ (the number of partitions

with |σ ·X| = ℓ) can be written as

Zn,ℓ =
∑
σ

I(|σ ·X| = ℓ)

where I is defined as

I(σ ·X = ℓ) =
1

2π

∫ π

−π

ei(σ·X−ℓ)xdx

and the sum is over all possible configurations of σ. This gives

Zn,ℓ = 2nIn,ℓ ×

1 if ℓ = 0

2 if ℓ > 0

where In,ℓ = In,ℓ(X) is the random integral given by

In,ℓ =
1

2π

∫ π

−π

cos(ℓx)
n∏

j=1

cos(xXj)dx . (3.2)

Proof of Theorem 2. Let M be bounded. We first use Equation 3.2, independence of the Xj,

and the Fubini theorem to get

E(In,ℓ) =
1

2π

∫ π

−π

cos(ℓx)fn(x)dx (3.3)
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and

E(In,ℓIn,ℓ′) =
1

(2π)2

∫ ∫
x1, x2 ∈ (−π,π]

cos(ℓx) cos(ℓ′x)fn(x1, x2)dx1dx2 (3.4)

where

f(x) := E(cos(xX)) =
1

M

M∑
j=1

cos(jx) =
1

M

[
sin
(
(M + 1

2
)x
)

2 sin(x/2)
− 1

2

]

and

f(x1, x2) := E(cos(x1X) cos(x2X)) =
1

2
(f(x1 + x2) + f(x1 − x2)).

We now need to estimate the above integrals to get the required moment estimates. We use

saddle point technique A to estimate the integrals as we care about the limit n → ∞. It is

important to note that there is an M in the denominator of both the integrands which can

grow with n, however, [BCP01] showed by a careful treatment of error terms that one gets the

same result. We only consider the case when M is bounded, as the general case is beyond the

scope of this thesis. We start by estimating the first moment 3.3. We have

cM =
1

3
+

1

2M
+

1

6M2
.

Note that

cMM2 =
M2

3
+

M

2
+

1

6
=

2M2 + 3M + 1

6
,

so that

(M + 1)(2M + 1) = 2M2 + 3M + 1 = 6 cMM2.

We wish to evaluate, for large n,

E(In,ℓ) =
1

2π

∫ π

−π

cos(ℓx)

 1

M

sin
(
(M + 1

2
)x
)

2 sin(x/2)
− 1

2


n

dx,

We shall use saddle point A method to estimate the integral. Since

f(x) =
1

M

M∑
j=1

cos(jx)
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its Taylor expansion around x = 0 is

f(x) = 1− (M + 1)(2M + 1)

12
x2 +O(x4). (3.5)

Where we have used
M∑

m=−M

m2 =
M(M + 1)(2M + 1)

3
.

It is convenient to introduce

cM =
(M + 1)(2M + 1)

6M2
,

so that
(M + 1)(2M + 1)

12
=

cM M2

2
.

Hence, we may write using 3.5

f(x) = 1− cM M2

2
x2 +O(x4),

where cM = 1 +O(1/M). Now, raising this expression to the nth power, we have

(
1− cM M2

2
x2 +O(x4)

)n

.

For small x (the dominant region in the saddle point analysis), we write

(
1− cM M2

2
x2 +O(x4)

)n

= exp
[
−n cM M2

2
x2
][
1 +O(nx4)

]
.

Since the effective integration region is x = O
(
n−1/2

)
, we have nx4 = O(1/n). In other

words, the error in the exponentiation is of order O(1/n). Thus, for large n the integral is

approximated by

E(In,ℓ) =
1

2π

∫ π

−π

cos(ℓx) exp
[
−n cM M2

2
x2
][
1 +O

( 1
n

)]
dx. (3.6)

Since the dominant contribution comes from x near 0, we can extend the integration limits to

±∞ A (introducing an error that is exponentially small in n):

E(In,ℓ) =
1

2π

∫ ∞

−∞
cos(ℓx) exp

[
−n cM M2

2
x2
]
dx
[
1 +O

( 1
n

)]
. (3.7)
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Using the standard Gaussian integral

∫ ∞

−∞
cos(bx)e−ax2

dx =

√
π

a
exp
(
− b2

4a

)
,

with

a =
n cM M2

2
and b = ℓ,

from 3.6 we obtain

∫ ∞

−∞
cos(ℓx) exp

[
−n cM M2

2
x2
]
dx =

√
2π

n cM M2
exp
[
− ℓ2

2n cM M2

]
.

Collecting the error terms, we conclude that for large n, from 3.7 we get

E(In,ℓ) =
√

1

2π n cM M2
exp
[
− ℓ2

2n cM M2

] [
1 +O

( 1
n

)]
.

Now we estimate the second moment 3.4. For this we will only show the leading term to give

the idea, the full proof is out of scope for this thesis. For the full proof, see [BCP01]. We have

E[In,ℓIn,ℓ′ ] =
1

(2π)2

∫ π

−π

∫ π

−π

cos(ℓx1) cos(ℓ
′x2) f

n(x1, x2) dx1 dx2, (3.8)

where

f(x) =
1

M

M∑
j=1

cos(jx)

and

f(x1, x2) =
1

2

[
f(x1 + x2) + f(x1 − x2)

]
. (3.9)

Within the domain of integration, consider the square Q with corners at (0,±π), (±π, 0). The

coordinate axes partition Q into the 4 isosceles triangles. The integration domain [−π, π]2

consists of Q and four other triangles. Consider one of the latter triangles, in the first quadrant

for example. It has its corners at (0, π), (π, 0) and (π, π). Clearly, this triangle can be obtained

via a parallel translation from the triangle with corners at (−π, 0), (0,−π) and (0, 0) in the

direction of the vector (1,1). In this translation, every point (x1, x2) moves to a point (x′
1, x

′
2)
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such that

x′
1, x

′
2 = x1 + x2 + 2π x′

1 − x′
2 = x1 − x2.

Now f(x) is 2π periodic, f(x1, x2) = f(x′
1, x

′
2). Now note that when ℓ+ ℓ′ is odd, the integral

3.8 is zero, i.e., integral is zero if ℓ and ℓ′ are of different parity (one odd and one even). So

we only need to consider ℓ and ℓ′ of the same parity. Now we start estimating the integral.

The idea is to again use saddle point approximation A. Clearly, f(x1, x2) has a unique global

maxima at (x1, x2) = (0, 0) in [−π, π] hence we expand around (0, 0). For small x we expand

the cosine as

cos(jx) = 1− (jx)2

2
+O(x4),

so that

f(x) =
1

M

M∑
j=1

cos(jx) = 1− x2

2M

M∑
j=1

j2 +O(x4). (3.10)

Since
M∑
j=1

j2 =
M(M + 1)(2M + 1)

6
,

we define

cM =
(M + 1)(2M + 1)

6M2
=

1

3
+

1

2M
+

1

6M2
,

and hence we get

=⇒ cMM2

2
=

2M2 + 3M + 1

12
.

Thus, the expansion 3.10 becomes

f(x) = 1− M2cM
2

x2 +O(x4).

Similarly, expanding f(x1, x2), Equation 3.9, for small x1, x2, we have

f(x1, x2) =
1

2

[
f(x1 + x2) + f(x1 − x2)

]
=

1

2

(
1− M2cM

2

[
(x2

1 + x2
2) + (x2

1 − x2
2)
])

+O(x4
1, x

4
2). (3.11)

Using

(x1 + x2)
2 + (x1 − x2)

2 = 2(x2
1 + x2

2),
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Equation 3.11 simplifies to

f(x1, x2) = 1− M2cM
2

(x2
1 + x2

2) +O(x4
1, x

4
2).

Now we want (f(x1, x2))
n. Note that

log f(x1, x2) = −M2cM
2

(x2
1 + x2

2) +O(x4
1, x

4
2).

Hence we can write

(f(x1, x2))
n = exp [n log(f(x1, x2))]

= exp

[
−nM2cM

2
(x2

1 + x2
2)

]
+ exp

[
nO(x4

1, x
4
2)
]
.

Because the main contribution comes from a small neighborhood around (0, 0), we may extend

the integrals to R2 without changing the leading asymptotics. Thus, the integral 3.8 becomes

E[In,ℓIn,ℓ′ ] =
1

(2π)2

∫
R2

cos(ℓx1) cos(ℓ
′x2) exp

[
−nM2cM

2
(x2

1 + x2
2)

]
+ exp

[
nO(x4

1, x
4
2)
]
,

The leading order term (say I0) is given by the separable Gaussian integrals

I0 =
1

(2π)2

2∏
j=1

∫ ∞

−∞
cos(ℓjx) exp

(
−nM2cM

2
x2
)
dx,

with ℓ1 = ℓ and ℓ2 = ℓ′. Using

∫ ∞

−∞
cos(bx)e−ax2

dx =

√
π

a
exp
(
− b2

4a

)
,

with a = nM2cM
2

, we obtain

I0 =
1

(2π)2

(√
2π

nM2cM
exp
[
− ℓ2

2nM2cM

])(√ 2π

nM2cM
exp
[
− (ℓ′)2

2nM2cM

])
=

1

2πnM2cM
exp
[
−ℓ2 + (ℓ′)2

2nM2cM

]
.
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It is convenient to introduce

γn =
1

M
√
2πn cM

,

so that the leading contribution is written as

γ2
n exp

(
−ℓ2 + (ℓ′)2

2nM2cM

)
.

Thus the local saddle-point expansion gives

E[In,ℓIn,ℓ′ ] = γ2
n

{
exp
(
−ℓ2 + (ℓ′)2

2nM2cM

)
+O

( 1
n

)}
.

A more careful analysis (which is out of scope of this thesis) done by [BCP01] shows that the

integral is

E[In,ℓIn,ℓ′ ] = 2γ2
n

(
exp

(
−ℓ2 + (ℓ′)2

2nM2cM

)
+O

(
1

n

)
+O

(
1

nγn2n

))
+

γn
2n

(δℓ+ℓ′,0 + δℓ−ℓ′,0) exp

(
−ℓ2 + (ℓ′)2

2nM2cM

)
.

Note that we have only considered bounded M , but in reality, it can grow and saddle point

method cannot be applied directly. Fortunately, a careful analysis of error terms by [BCP01]

showed that the result still holds, but we will not discuss that as it is out of scope for this

thesis.

3.3.3 Phase transition

Having the moment estimates of In,ℓ, we now turn to establishing the existence of Phase

transition in NPP formally (Theorem 1). We start with the estimating the probabilities of

existence of perfect partitions.

Lemma 1. Given a Number Partitioning Problem, the probability P(Zn,ℓ > 0) is bounded above

and below as

P(Zn,ℓ > 0) ≤


ρn
2

(
exp

(
− ℓ2

2nM2cM

)
+ C1

n

)
if ℓ = 0

ρn

(
exp

(
− ℓ2

2nM2cM

)
+ C1

n

)
if ℓ ̸= 0
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P(Zn,ℓ > 0) ≥ 1

2
(
1 + exp

(
ℓ2

nM2cM

)((
C2

nρn

)
+
(
C3

n

))
+ 1

ρn

)
where ρn is defined as ρn = 2n+1γn.

Proof. Consider ℓ ̸= 0. From Theorem 2 we have

E[In,ℓ] = γn

(
exp

(
− ℓ2

2nM2cM

)
+O(n−1)

)
.

If we multiply by 2n+1 we get

E[Zn,ℓ] = ρn

(
exp

(
− ℓ2

2nM2cM

)
+O(n−1)

)
.

In other words, there exists a constant C1 > 0 such that

E[Zn,ℓ] ≤ ρn

(
exp

(
− ℓ2

2nM2cM

)
+

C1

n

)
. (3.12)

Also notice that

E[Zn,ℓ] ≥ ρn exp

(
− ℓ2

2nM2cM

)
. (3.13)

Furthermore, from Theorem 2 we have

E[In,ℓIn,ℓ′ ] = 2γ2
n

(
exp

(
−ℓ2 + (ℓ′)2

2nM2cM

)
+O

(
1

n

)
+O

(
1

nγn2n

))
+

γn
2n

(δℓ+ℓ′,0 + δℓ−ℓ′,0) exp

(
−ℓ2 + (ℓ′)2

2nM2cM

)

If ℓ = ℓ′ we get

E[I2n,ℓ] = 2γ2
n

(
exp

(
− 2ℓ2

2nM2cM

)
+O

(
1

n

)
+O

(
1

nγn2n

))
+

γn
2n

exp

(
− 2ℓ2

2nM2cM

)

Multiplying by (2n+1)2 we get

E[Z2
n,ℓ] = 2ρ2n

(
exp

(
− 2l2

2nM2cM

)
+O

(
1

n

)
+O

(
1

nρn

))
+ 2ρn exp

(
− 2ℓ2

2nM2cM

)
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Or in other words, there exists a constants C2 > 0 and C3 > 0 such that

E[Z2
n,ℓ] ≤ 2ρ2n

(
exp

(
− 2ℓ2

2nM2cM

)
+

(
C2

n

)
+

(
C3

nρn

))
+ 2ρn exp

(
− 2ℓ2

2nM2cM

)
. (3.14)

Now using Markov’s inequality B and 3.12 we get

P(Zn,ℓ > 0) ≤ ρn

(
exp

(
− ℓ2

2nM2cM

)
+

C1

n

)
.

Using Cauchy-Schwartz inequality B, 3.13 and 3.14 we get

P(Zn,ℓ > 0) ≥
ρ2n exp

(
− 2ℓ2

2nM2cM

)
2ρ2n

(
exp

(
− 2ℓ2

2nM2cM

)
+
(
C2

n

)
+
(

C3

nρn

))
+ 2ρn exp

(
− 2ℓ2

2nM2cM

)
=⇒ P(Zn,ℓ > 0) ≥ 1

2
(
1 + exp

(
ℓ2

nM2cM

)((
C2

nρn

)
+
(
C3

n

))
+ 1

ρn

) .
The same calculation can be done for ℓ = 0, the only difference is that Zn,ℓ = 2nIn,ℓ.

Now we use 1 to prove Theorem 1. It follows from a simple analysis of probability estimates

under the right limits.

Proof of Theorem 1. We need to find the probability of existence of perfect partitions. Let Zn

be the number of perfect partition for zero target. Clearly, on En, we have Zn,0 = Zn and

Zn,1 = 0 whereas on On, we have Zn,1 = Zn and Zn,0 = 0. Hence we have

P(Zn > 0| En) = P(Zn,0 > 0)P(En) and P(Zn > 0| On) = P(Zn,1 > 0)P(On).

It can be shown that P(E) = P(E) = 1
2

with an error exponentially small in n. Hence we can

write

P(Zn > 0) = P(Zn,0 > 0)P(En) + P(Zn,1 > 0)P(On)

=⇒ P(Zn > 0) =
1

2
P(Zn,0 > 0) +

1

2
P(Zn,1 > 0) +O(2−n).
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Now using Lemma 1 we can write

P(Zn > 0) =
1

1 +O
(

1
nρn

)
+O

(
1
n

)
+ 1

ρn

. (3.15)

The sensitive parametrization defined in Equation 3.1 corresponds to

M =
2n+λn

√
n

.

In this parametrization limn→∞ κn < 1 means limn→∞ λn → −∞. Note that in this regime

ρn → ∞. Now from Equation 3.15, we can see that P(Zn > 0) → 1 as n → ∞. On the other

hand limn→∞ κn > 1 means limn→∞ λn → ∞. In this regime ρn → 0. Hence again by Lemma

1 we have P(Zn,ℓ > 0) ≤ ρn(1 +O(n−1)) for ℓ = O(M). Hence we clearly have P(Zn > 0) → 0

as n → ∞

This proves the existence of phase transition in NPP. This was an extremely celebrated result

in theoretical computer science, especially in the study NP-completeness. In this thesis, we

have shown, as we shall see in the later chapters, how these results can serve as powerful tools

for studying Strong Lottery Ticket Hypothesis.
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Chapter 4

Neural Network Pruning and Lottery

Tickets

4.1 The Lottery Ticket Hypothesis

As discussed in Chapter 2, neural networks are powerful tools across various domains, but their

training requires significant computational resources. In some cases, these networks grow so

large that even inference becomes computationally expensive. Consequently, developing effi-

cient algorithms for both training and inference is a crucial area of research in machine learning.

One effective approach to improving efficiency is pruning, which reduces the number of param-

eters in a neural network by systematically removing weights. Remarkably, pruning techniques

can reduce the parameter count of trained networks by over 90% without a significant drop

in performance. This not only accelerates inference but also minimizes storage requirements,

allowing one to train a large network, prune it, and achieve much faster inference with a sig-

nificantly smaller memory footprint. A widely used pruning method is magnitude pruning,

where the network is first trained, and then the smallest p% of the weights—determined by

their magnitude—are set to zero. However, training a sparse network from scratch does not

perform as well as pruning a fully trained network as illustrated in Figure 4.1. Therefore it was

a big surprise when [FC18] proposed the following hypothesis: A dense, randomly-initialized,

feed-forward networks contain subnetworks (winning tickets) that—when trained in isolation

— reach test accuracy comparable to the original network in a similar number of iterations. If
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This works!

But this does not!

Train Prune

Prune Train

Figure 4.1: Training a sparse network from scratch does not perform as well as pruning a fully
trained network.

true, and if one can find a way to find these sparse networks (called Lottery Tickets) hidden in

the dense network, it would be great as this would reduce both the training and the inference

cost. To support their hypothesis, they also gave an algorithm to identify the Lottery Tickets

called the Iterative Magnitude Pruning (IMP) algorithm. The IMP algorithm is illustrated in

Figure 4.2 It goes as follows: First, randomly initialize the weights of a network and note this

Train Prune

Set original initialization
and Repeat

Figure 4.2: The Iterative Magnitude Pruning (IMP) algorithm.

initialization. Then train this network on a given dataset. Now prune a certain amount of

the weights of the network based on the magnitude. For example, smallest 5% of the weights

are removed. These weights are now freezed and cannot be trained further. For the rest of

the weights, set their value to the original initialization and train again on the given dataset.

Repeat the process until the performance is not dropping significantly. This procedure can find

sparse subnetworks "Lottery tickets", that can be trained from scratch and still obtain results

comparable to a dense network. The algorithm basically finds the so called "masks", which

are basically a set of weights which are supposed to be set to zero freezed during training.

The conjecture was quite celebrated in the field due to its impactful promise. However, as it
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is evident, it takes multiple rounds of training to find the Lottery, and hence it is not really

helping in decreasing in decreasing the training cost. Off course, it decreases the inference

cost, that is not the only bane of this this algorithm. Its was also realized that there Lottery

tickets are transferable, i.e., once a Lottery ticket is found on a given dataset, it can be used on

similar datasets. This is quite powerful as one can spend computational resources on finding

the lottery ticket on some dataset, and then it can be used on many similar datasets making

most of the training much less expensive. Therefor the Lottery ticket hypothesis became more

famous and a lot more experimental work was done. But the problem of proving the hypothesis

remains open. It turns out that it is extremely hard to do any kind of theoretical work on a

trained network, and hence it is extremely difficult to make progress on this problem.

4.2 The Strong Lottery Ticket Hypothesis

In 2018, [FC18] proposed the Lottery Ticket Hypothesis, which states that every dense network

contains a sparse subnetwork that can be trained from scratch, and performs equally well as

the dense network. Following this line of work, [Zho+19], [Ram+19] and [Wan+19] found

algorithms to find subnetworks within large randomly initialized networks that perform as

good on a given task. This motivated the Strong Lottery Ticket Hypothesis (SLTH), which

states that sufficiently overparameterized randomly initialized neural networks contain sparse

subnetworks that will perform as well as a small trained network on a given dataset without

any training. This motivated a lot of formal results proving that a given target network can

be approximated by pruning a sufficiently large network. One of the first results were by

[Mal+20], where they showed that to approximate a target network of width l and depth d,

one needs a network of depth 2l and width O(d5l2). [Pen+20] improved this bound by proving

that width O(d log(dl)) is enough. Another construction was provided by [Bur22], where they

showed that a network of width l + 1 is enough to approximate a network of width l, with a

certain compromise on the width. An informal statement of these kinds of results is provided

below.

Theorem (Informal statement of previous SLTH results). With high probability, a random

artificial neural network NS with m parameters can be pruned so that the resulting subnetwork

N ϵ-approximates (i.e., approximates up to an error ϵ) any target artificial neural network Nt
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with O(m/ log2(1/ϵ)) parameters.

There are also results on the lower bound on the required size of a network in order to approxi-

mate a given target network. An informal statement of the result by [Pen+20] on lower bound

is given below.

Theorem (Informal statement of Theorem 4). There exist a to layered net 2-layer neural

network with width d which cannot be approximated to error within ϵ by pruning a randomly

initialized 2-layer network, unless the random network has width at least Ω(d log(1/ϵ)).

[DK21] showed that within a large network, there exists subnetworks that perform well on a

given task, and are resilient to extreme forms of quantization, such as binarization. They also

gave a theoretical result related to their claim.

Theorem (Informal, [DK21]). Every fully-connected (FC) target network with ReLU activa-

tions of depth l and width n with bounded weights, a random binary FC network with ReLU

activations of depth 2l and width O(ln3/2 + ln log(ln/δ)) contains with probability (1 − δ) a

binary subnetwork that approximates the target network with error at most ϵ.

For the convenience of the reader, we now state some of the results mentioned in this section

formally.

4.2.1 SLTH: Formal Results

First we define some notation and setup. We use lowercase letters to represent scalars (w) and

bold lower-case letters to denote vectors (v). The i-th coordinate of the vector v is denoted

as vi. Matrices are denoted by bold upper-case letters (W). the ℓ2 norm of a vector v will be

denoted by ∥v∥. The uniform distribution over the interval [a, b] will be denoted by U [a, b]. We

use c, C to denote positive absolute constants. We also recall the definition of neural network

from Chapter 2.

Definition 6. An neural network is a function f : Rd0 → Rdl defined as

f(x) = Wlσ(Wl−1...σ(W1x)), (4.1)
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where Wi has dimension di×di−1, x ∈ Rd0, and σ : R → R is the nonlinear activation function

and v = σ(x) means vi = σ(xi).

From here on, all neural networks will have ReLU nonlinear activation, i.e., σ(x) = max(0, x).

Our goal is to start with a neural network f(x) and a second larger neural network g(x) of the

form

g(x) = M2lσ(M2l−1...σ(M1x)),

and approximating f by obtaining a pruned version of g by eliminating its weights

ĝ(x) = (S2l ⊙M2l)σ((S2l−1 ⊙M2l−1)...σ((S1 ⊙M1)x)),

where each Si is a binary (pruning) matrix, with the same dimension as Mi, and ⊙ represents

element-wise product between matrices.

Theorem 3. Let F be a neural network of the form defined in Equation 4.1. Consider a 2l

layered randomly initialized 2l-layered neural network

g(x) = M2lσ(M2l−1...σ(M1x)),

whose weights are drawn from U [−1, 1], M2i has dimension

di × Cdi−1 log
didi−1l

min{ϵ, δ}
,

and M2i−1 has dimension

Cdi−1 log
di−1dil

min{ϵ, δ}
× di−1.

Then with probability at least 1− δ, for every f ∈ F , ∃ Si such that

min
Si∈{0,1}di×di−1

sup
∥x∥≤1

∥f(x)− (S2l ⊙M2l)σ((S2l−1 ⊙M2l−1)...σ((S1 ⊙M1)x))∥ ≤ ϵ.

Theorem 3 is basically saying that to approximate a target network of width l and depth d,

one needs a network of depth 2l width O(d log(dl)). Now we discuss a lower bound proved

by [Pen+20]. Before stating the main result, note that any linear transformation Wx where

W ∈ Rd ×Rd and W ∈ Rd can be expressed as a 2 layered neural network. Let F be the class
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of functions

F := {hW : W ∈ Rd × Rd}, where hW(x) =
[
I −I

]
σ

 W

−W

x

 . (4.2)

Theorem 4. Consider a neural network, g : Rd → Rd of the form g(x) = Mlσ(Ml−1...σ(M1x)),

with arbitrary distributions on Mi’s. Let G be the set of neural networks that can be formed by

pruning g. Let F be defined as in Equation 4.2. If the following statement holds:

∀ h ∈ F , P

(
∃ g′ ∈ G : sup

x:∥x∥≤1

∥h(x)− g′(x)∥ < ϵ

)
≥ 1

2
,

then g(x) has Ω(d2 log(1/ϵ)) parameters. Further if l = 2, then the width of g(x) is Ω(d log(1/ϵ)).

We now state the theorem by [Bur22] which approximates an l layered network using an

l + 1 layered network. The architecture of a neural such as in Equation 4.1 is the tuple

n̄ = (d0, d1, . . . , dl). We will also use the notation n1 = d0. We now state the result by [Bur22].

Theorem 5. Assume ϵ, δ ∈ (0, 1), a target network ft(x) : Rn0 → RdLt with architecture n̄t,

Lt layers and Nt number of non zero parameters, and a source network fs with architecture n̄s

with Ls = Lt + 1 layers are given with all parameters sampled uniformly form [−1, 1]. Then,

with probability at least 1− δ, fs contains a subnetwork fϵ ⊂ fs so that each output component

i is approximated as maxx∈Rn0 |ft,i(x)− fϵ,i(x)| ≤ ϵ if

ns,l+1 ≥ Cnt,l log

(
1

min{ϵl+1,δ/ρ}

)

for l > 1, where ρ = CNγ+1
t log(1/min{(minl ϵl), δ}) and ϵl is defined as

ϵl :=
ϵ

nlLt

[
(1 +Ml−1)

(
1 +

ϵ

Lt

) Lt−1∏
k=l+1

(
∥W (k)

t ∥∞ +
ϵ

Lt

)]−1

.

for any γ > 0. W
(k)
t denotes the weight matrix of the target network at layer k and Ml :=

supx∈D ∥xl∥1. Furthermore we require ns,1 ≥ Cnt,1 log
(

1
min{ϵl+1,δ/ρ}

)
.
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Originally, this result by [Bur22] was proved for arbitrary activation functions. Infact, general-

ization to arbitrary activation functions was one of the major contributions of this work, except

for proving an SLTH result with l+ 1 layers. However, in this thesis, we are only interested in

working with ReLU activation function, and hence we have stated this result for ReLU acti-

vation only. In the next chapter, we shall adapt constructions in [Pen+20], [Bur22] and prove

SLTH results, but starting in a quantized setting. We will see that the construction by [Bur22]

is quite powerful in the quantized setting in our framework. It is using this construction we

will be able to get rid of undetermined constants (mostly) and provide the exact size of the

network required to represent a given target network.
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Lottery Tickets, Weight Quantization

and Phase Transition

5.1 Introduction

In chapter 4, we reviewed some literature on the theoretical work on Strong Lottery Ticket

Hypothesis (SLTH). All these results assume a large network whose weights are randomly

initialized, sampled from some continuous interval. Then they try to prune this network

in certain ways to approximates a given target network. However computers always represent

numbers with finite precision, and hence weights of a neural network are numbers with finite

precision, taken from some discrete set. In this chapter, we ask an important question: Is the

precision of with which the weights are represented is related to weather a given

large network can be pruned to some target network. Moreover, quantization is another

method for compression of neural networks. It has been observed that the weights of a trained

neural network can be quantized to a great extent without significant decrease in performance.

In this chapter, we provide a relationship between the precision of weights, and size of a large

network that needs to hold so that it can represent a given target network. We prove results

answering this question, which we think lay the foundation of future work in the intersection

of pruning and quantization of neural networks. One key difference between our and previous

results is that we while previous results go for approximating the output of the given network,

we go exact an representation. This was done for theoretical simplicity. Generalizing our
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results to approximate a given network is a challenge for future work. We assume a target

network whose weights are sampled from a discrete set like Sδ1 = {−1, . . . , δ1, 2δ1, . . . , 1},

where δ = 10−k1 for some k1 ∈ N and a large network whose weights are sampled from say

Sδ2 = {−1, . . . , δ2, 2δ2, . . . , 1}, where δ = 10−k2 , with k2 ≥ k1. The number δi defines the

precision of the network. The larger network can be quantized, i.e., the precision of it’s

weights can be decreased (by removing less significant digits from after the decimal place:

0.4326 → 0.43, for example) and it can then be pruned. We then ask what relationship must

hold between the precision size of the large network such that it can be pruned the given target

with high probability. We further assume that after certain operation, the precision is set to δ

again. For example, in a network, we may assume that output from any neuron of each odd

layer is of precision δ. This may happen at different stages in the target and the large network,

and may vary from result to result. This assumption was made for theoretical simplicity and

we leave it to the future work to deal with a more general case. We adapt constructions from

[Pen+20] and [Bur22] but starting in a quantized setting, we reduce the problem to solving a

bunch of Number Partitioning Problem (NPP), which is an equivalent problem to RSS. NPP is

one of the most important problems in the theory of NP-completeness and is known to exhibit

a Phase transition [BCP01]. Leveraging the known results on NPP, it is natural to deal with

quantized system. In one of our results, the required network size of the large network is exact

except for it’s first layer, free of any undetermined constants unlike other pervious works. We

also provide lower bounds on the required parameter count of a network to represent a two

layered network. We do this by a parameter counting argument similar of [Pen+20], but in

quantized setting. The upper and lower bounds have the same form asymptotically, indicating

optimality of our results.

Statements of Results

In this section, we formally state our results on SLTH and weight quantization. We start by

defining some notation.
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Notation

We use lowercase letters to represent scalars, such as w, y and so on. We use bold lower-case

letters to denote vectors, such as v. The jth component of a vector v is denoted as vi. Matrices

are denoted by bold upper-case letters such as M. If a matrix W has dimension d1 × d2, then

we say W ∈ Rd1×d2 . Sδ denotes the set {−1, . . . , δ, 2δ, . . . , 1} where δ = 10−k for some k ∈ N.

A number b is said to be of precision if b ∈ Sδ. We use C,Ci, i ∈ N to denote positive absolute

constants.

5.1.1 Preliminaries and Setup

Definition 7. An neural network is a function f : Rd0 → Rdl defined as

f(x) = Wlσ(Wl−1...σ(W1x)), (5.1)

where Wi has dimension di×di−1, x ∈ Rd0, and σ : R → R is the nonlinear activation function

and v = σ(x) means vi = σ(xi).

The elements of W’s are called weights or parameters of the network. From here on, all neural

networks will have ReLU nonlinear activation, i.e., σ(x) = max(0, x). Our goal is to start with

a neural network f(x) and a second larger neural network g(x) of the form

g(x) = M2lσ(M2l−1...σ(M1x)),

and represent f by obtaining a pruned version of g by eliminating its weights

ĝ(x) = (S2l ⊙M2l)σ((M2l−1 ⊙M2l−1)...σ((S1 ⊙M1)x)),

where each Si is a binary (pruning) matrix, with the same dimension as Mi, and ⊙ represents

element-wise product between matrices. In other words, we need to find Si such that f = ĝ.
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5.1.2 Quantized SLTH Results

The main question that we want to answer is the following: given a target neural network,

whose weights are of precision δ1 and a large network of precision δ2, such that δ1 ≥ δ2, what

is the relationship between δ2 and size of the large network such that the bigger network can

be pruned to the target network. A key difference here is that we are interested in exactly

representing a network and not approximating it within an error ϵ, as it is more natural in the

discrete setting. We start with some definitions.

Definition 8. A δ-quantized neural network is a neural network whose weights are sampled

uniformly from Sδ = {−1, . . . , δ, 2δ, . . . , 1} with δ = 10−k for some k ∈ N.

We also have some mixed precision assumption on the target and the large network. For any

target network, the output of a neuron cannot be more precise than the precision of it’s weights.

Such networks will be called networks of Type I. Then we have two other kinds of networks,

Type II and Type III. In a Type II network, the output of every odd layer cannot be more

precise than the precision of it’s weights. In a Type III network, the output of every neuron

cannot be more precise than the precision of it’s weights, except for the first layer, where output

can be of any precision. Type II and Type III networks will serve as large networks. These

assumptions were made for theoretical simplicity, and we leave it to future work to deal with

the general case.

Definition 9. A neural network is said to be of Type I if it is of the form

f(x) = [Wl[σ(Wl−1...[σ(W1x)]δ)]δ]δ,

of Type II if it is of the form

f(x) = [W2lσ(W2l−1...[σ(W2(σ(W1x)))]δ)]δ,

of Type III if it is of the form

f(x) = [W2l[σ(W2l−1...[σ(W2(σ(W1x)))]δ)]δ]δ.

where δ is the precision of elements of Wi’s and [·]δ operation makes a number of precision δ
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by removing sufficient number of insignificant digits.

Henceforth we denote [·]δ by [·] as δ is clear from the input of [·] function. Now we state our

first main result, which is analogs to the theorem proved by [Pen+20], but in the quantized

setting.

Theorem 6. Let F be the class of δ1 quantized neural networks of Type I. Consider a 2l layered

randomly initialized δ2-quantized neural network

g(x) = M2lσ(M2l−1...σ(M1x)),

of Type II with δ1 ≥ δ2. Say the precision of elements of Mi’s is reduced to δ such that δ ≤ δ1.

If M2i has dimension

di × Cdi−1 log2
1

δ22
,

and M2i−1 has dimension

Cdi−1 log2
1

δ2
× di−1.

Then for every f ∈ F ,

∃ Si ∈ {0, 1}di×di−1 : (S2l ⊙M2l)σ((S2l−1 ⊙M2l−1)...σ((S1 ⊙M1)x)) = f(x).

with probability

1−Nt O

((
log2

1

δ2

)− 1
7

)
where Nt is the total number of parameters in f .

Our next theorem employs construction from [Bur22]. Note the absence of arbitrary constants

(except the first layer) in the required size of the large network.

Theorem 7. Let F be the class of δ1 quantized neural networks of Type I. Consider an l + 1

layered randomly initialized neural network

g(x) = Ml+1σ(Ml...σ(M1x)),

of Type III whose weights are sampled from {−1 . . . ,−δ, δ, . . . , 1} with δ2 ≤ δ1. Say the precision
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elements of Mi’s is reduced to δ such that δ ≤ δ1. If M1 and M2 has dimensions

d0 × Cd0 log2
1

δ2
and 2d1 log2

1

δ2
× Cd0 log2

1

δ2

respectively, Mi+1 has dimension greater than

2di log2
1

δ2
× 2di+1 log2

1

δ2

∀ 2 < i < l − 1 and Ml+1 has dimension

2 log2

(
1

δ2

)
dl−1 × dl.

Then for every f ∈ F we have

∃ Si ∈ {0, 1}di×di−1 : (Sl+1 ⊙Ml+1)σ((Sl ⊙Ml)...σ((S1 ⊙M1)x)) = f(x).

with probability

1−Nt 2 log2

(
1

δ2

)
O

((
log2

1

δ2

)− 1
7

)
where Nt is the total number of parameters in f .

5.1.3 Lower Bound by Parameter Counting

We now state the result on lower bound, where we show using parameter counting argument

that a there exists a two layered δ quantized network with d2 parameters that cannot be

represented by a neural network with unless it has Λ
(
d2 log2

(
1
δ

))
parameters. Note that any

linear transformation Wx where W ∈ Rd × Rd and x ∈ Rd can be expressed as a 2 layered

neural network. Let F be the class of functions

F := {hW : W ∈ Rd × Rd}, where hW(x) =
[
I −I

]
σ

 W

−W

x

 . (5.2)
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Theorem 8. Let g : Rd → Rd be a δ quantized neural network of the form

g(x) = Mlσ(Ml−1...σ(M1x)),

where elements of Mi’s are sampled from arbitrary distributions over Sδ. Let α be the total

number of non-zero parameters in g. Let G be the set of all matrices that can be formed by

pruning g. Let F be defined as in Eq. 5.2. Then if

∀ h ∈ F , P (∃ g′ ∈ G : g′ = h) ≥ p,

then we must have

α ≥ log2 p+ d2 log2

(
2

δ
+ 1

)
.

We see that there the lower bound in Theorem 8 and upper bound in Theorem 6 have the

same fore asymptotically the same i.e., Cm log
(
1
δ

)
, where m is the number of parameters

in the target. Hence we have showed that atleast for exact representation of network, and

for this simple case of two layered network, our solution is optimal in the asymptotic sense.

Generalizing this is another challenge for the future work.

5.1.4 Random Subset Sum Problem

The random subset sum problem (RSSP) is the problem of finding a subset of a given set such

that the sum of this subset equals a given target t. RSSP is an important tool in proving

results on SLTH [Pen+20] [Bur22]. RSSP and NPP are closely related, and hence we can use

the results in this section to make statements in RSSP. We shall then use these results on RSSP

to prove results on SLTH and quantization.

Definition 10. Let X = (X1, X2, . . . , Xn) be a set of integers sampled uniformly from the

set {−M, . . . , 1, 2, 3, . . . ,M}. The Random Subset Sum Problem is defined as the problem of

finding an index set S ⊂ [n] such that
∑

i∈S Xi = t for a given integer t, called the target.

Lemma 2. Consider a Random subset sum problem on the set X = (X1, X2, . . . , XCn) sampled

from an arbitrary distribution with support {−M, · · · − 1, 1, . . . ,M} with a target t = O(M).
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• There exists C such that n samples out of the Cn will be uniformly distributed on

{−M, . . . ,−1, 1, . . . ,M} with high probability. Let’s relabel these uniform samples as

(X1, X2, . . . , Xn). This defines a new subset sum problem with set (X1, X2, . . . , Xn) and

target t.

• Let Yn,t be the number of possible solutions to this new problem. Then

P(Yn,t > 0) ≤

ρn

(
exp

(
− ℓ2

2nM2cM

)
+ C1

n

)
if ℓ = 0

2ρn

(
exp

(
− ℓ2

2nM2cM

)
+ C1

n

)
if ℓ ̸= 0,

P(Yn,t > 0) ≥ 1(
1 + exp

(
ℓ2

nM2cM

)((
C2

nρn

)
+
(
C3

n

))
+ 1

ρn

) ,
where

ℓ = Λ− 2t, Λ =
n∑

i=1

Xi,

γn =
1

M
√
2πncM

, cM = E
(
X2

M2

)
=

1

3
+

1

2M
+

1

6M2
.

Lemma 3. A random subset sum problem with given set X = (X1, X2, ..., Xn) and target t

can be solved iff the number partitioning problem can be solved with the given set X and target

Λ− 2t (or 2t− Λ), where Λ =
∑n

i=1Xi.

Proof. First of all notice that a Number Partitioning Problem on a set of numbers X =

(X1, X2, ..., Xn) sampled uniformly from the set {−M, .., 1, 2, ..,M} can be solved iff the Num-

ber Partitioning Problem on a set of numbers X = (|X1|, |X2|, ..., |Xn|) sampled uniformly from

the set {0, 1, 2, ..,M} can be solved for any given target. This is because, first, it is obvious

that {Xi}ni=1 is distributed uniformly over {0, 1, 2, ..,M}, and secondly, the number partition-

ing problem does not care about the signs of the numbers, a sign can always be absorbed in

the σi while solving the number partitioning problem.

We have a random subset sum problem with set X and target t. Assume number partitioning

problem can be solved with the given set X and target Λ− 2t. Notice that NPP does not care

about the sign of the target, as an NPP with target k can be solved iff an NPP with target

−k can be solved. WLOG assume there exists two partitions of X, with sums be x and Λ− x
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such that (Λ − x) − x = Λ − 2t =⇒ x = t. Hence one of the subsets must sum up to t,

so the random subset sum problem is solved. It also follows that if this constructed number

partitioning problem cannot be solved, then the given random subset sum problem can also

not be solved.

Proof of Lemma 2. The first part of the lemma is obvious from rejection sampling methods

(See Appendix C), we will prove the second. Considers the number partitioning problem

corresponding to the given random subset sum problem as given by Lemma 3. The target of

this number partitioning problem is ℓ = Λ− 2t. Consider ℓ ̸= 0. Note that if Λ is even (event

denoted by En), then ℓ is also even and if Λ is odd (event denoted by On), then ℓ is also odd.

The probability that the random subset sum problem can be solved can be written in terms of

the probability that the number partitioning problem can be solved

P(Yn,t > 0) = P(En)P(Zn,ℓ > 0|En) + P(On)P(Zn,ℓ > 0|On)

If ℓ is even, then

P(Zn,ℓ > 0) = P(En)P(Zn,ℓ > 0|En).

If ℓ is odd, then

P(Zn,ℓ > 0) = P(On)P(Zn,ℓ > 0|On).

But on En, ℓ is always even and on On, ℓ is always odd. Hence P(Yn,t > 0) can be written as

P(Yn,t > 0) = 2P(Zn,ℓ > 0).

From Lemma 1 it follows that

P(Yn,t > 0) ≤ 2ρn

(
exp

(
− ℓ2

2nM2cM

)
+

C1

n

)
,

P(Yn,t > 0) ≥ 1(
1 + exp

(
ℓ2

nM2cM

)((
C2

nρn

)
+
(
C3

n

))
+ 1

ρn

) .
Same can be done for ℓ = 0.

Lemma 4. Let M = M(n) be an arbitrary function of n. Consider a Random subset sum

problem on the set X = (X1, X2, . . . , Xn) sampled uniformly from {−M, . . . ,−1, 1, . . . ,M}
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with a target t = O(M). If

κn = lim
n→∞

log2M

n
< 1,

then we have

P(Yn,t > 0) = 1−O
(

1

n
1
7

)
.

Proof of Lemma 4. We are given that limn→∞ κn exists and is less than 1. Consider a more

sensitive parametrization

κn = 1− log2 n

2n
+

λn

n
or M =

2n+λn

√
n

.

In this parametrization limn→∞ κn < 1 means limn→∞ λn → −∞. Note that in this regime

ρn → ∞. Now we have

P(Yn,t > 0) ≥ 1(
1 + exp

(
ℓ2

nM2cM

)((
C2

nρn

)
+
(
C3

n

))
+ 1

ρn

)
=⇒ P(Yn,t > 0) ≥ 1(

1 + exp
(

(Λ−2t)2

nM2cM

)((
C2

nρn

)
+
(
C3

n

))
+ 1

ρn

) .
Now t = O(M) and assume

Λ <
1√
3 + β

M
√
n log n.

According to Hoeffding’s inequality B, that happens with probability

P
(
Λ <

1√
3 + β

M
√

n log n

)
≥ 1− exp

(
1

3+β
M2n log n

4nM2

)

=⇒ P
(
Λ <

1√
3 + β

M
√

n log n

)
≥ 1− 1

n
1

2(3+β)

.

Now as ρn → ∞, we have

P(Yn,t > 0) ≥ 1(
1 + C3

n
β

3+β

)
=⇒ P(Yn,t > 0) ≥ 1−O

(
1

n
β

3+β

)
.

Hence the probability (say P(E)) of events P (Yn,t > 0) and Λ < 1√
3+β

M
√
n log n happening
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together is given by

P(E) =

(
1−O

(
1

n
β

3+β

))(
1− 1

n
1

2(3+β)

)
.

Note that this probability will converge to 1 fastest if β = 1
2
. Hence we choose β = 1

2
and we

get

P(E) =

(
1−O

(
1

n
1
7

))
.

Lemma 4 basically tells us under what condition can a RSSP be solved with high probability.

It is important to note here that by high probability, we mean probability converges to 1 as

the size of the set goes to ∞. Now we shall leverage this result to prove statements on SLTH

in quantized setting.

5.2 Proving Results on SLTH and Weight Quantization

5.2.1 The Pensia Construction

Now we provide the proofs of various results stated in Section 5.1.2. We start with Theorem

6. We follow the strategy of [Pen+20] to reduce the problem of pruning (or setting weights to

zero) in order to represent a target network to a bunch of random subset sum problems.

Lemma 5 (Representing a Single weight). Let g : R → R be a randomly initialized δ2 quantized

network of the form g(x) = [vTσ(ux)] where u,v,∈ R2n. Assume δ2 ≤ δ1. Say the precision

of weights of g is reduced to δ such that δ ≤ δ1. If n > C log 1
δ2

, then with probability

1−O

((
log2

1

δ2

)− 1
7

)
,

we have

∀ w ∈ Sδ1 , ∃ s ∈ {0, 1}2n : [wx] = [(v ⊙ s)Tσ(ux)].

where [·]δ is the operation which reduces the precision of a number to δ.

Proof. Let the precision of g be δ ≤ δ1. First decompose wx = σ(wx)− σ(−wx). WLOG say

53



Chapter 5. Lottery Tickets, Weight Quantization and Phase Transition

w > 0. Let

v =

b
d

 ,u =

a
c

 , s =

s1
s2

 ,

where a,b, c,d ∈ Rn, s1, s2 ∈ {0, 1}n. This is shown diagrammatically in Figure 5.1.

Step 1: Let a+ = max{0, a} be the vector obtained by pruning all the negative entries of a.

Since w ≥ 0, then for all x ≤ 0 we have σ(wx) = bTσ(a+x) = 0. Moreover, further pruning

of a+ would not affect this equality for x ≤ 0. Thus we consider x > 0 in next two steps.

Therefore we get σ(wx) = wx and bTa+x =
∑

i bia
+
i x.

Step 2: Consider the random variables Zi = bia
+
i . These are numbers of precision δ2, sampled

from the set Sδ × Sδ. Now w, which is a number of precision δ1, belongs to the set Sδ × Sδ, as

δ is of the form 10−k for k ∈ N and δ ≤ δ1. Now by Lemma 2 and 4, as long as n > C log2
1
δ2

,

the subset sum problem with set {Zi} and target w can be solved with probability

p = 1−O

((
log2

1

δ2

)− 1
7

)
.

Note that solving subset in an integer setting where numbers are sampled from {−M, . . . ,M}

and numbers of precision δ setting is equivalent with δ = 1
M

. Hence it follows that with

probability p

∀ w ∈ S+
δ , ∃ s1 ∈ {0, 1}n : w = bT s1 ⊙ a+.

where S+
δ denotes positive members of Sδ. The part shown in green in Figure 5.1 hence handles

positive inputs.

Step 3: Similar to steps 1 and 2, we can prune negative weights from c and let the red part

shown in figure handle negative inputs. It will follow that

∀ w ∈ S+
δ , ∃ s2 ∈ {0, 1}n : w = dT s2 ⊙ c−.

with probability p. Hence Lemma 5 follows.

Lemma 6 (Representing a single Neuron). Consider a randomly initialized δ2 quantized neural

network g(x) = [vTσ(Mx)] with x ∈ Rd. Assume δ2 ≤ δ1. Say the precision of weights of g is
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a1

an−1

an

c1

c2

cn

b1

bn−1

bn

d1

d2

dn

Figure 5.1: Approximating a single weight with ReLU activation

reduced to δ such that δ ≤ δ1. Let ĝ(x) = [(s ⊙ v)Tσ((T ⊙M)x)] be the pruned network for

a choice of binary vector s and matrix T. Let fw(x) = [wTx] be a single layered δ1 quantized

network. If M ∈ RCd log2
1
δ2

×d and v ∈ RCd log2
1
δ2 , then with probability

1− d O

((
log2

1

δ2

)− 1
7

)
,

we have

∀w ∈ Sd
δ ∃ s,T : fw(x) = ĝ(x).

Proof. Assume weights of g are of precision δ. We prove the required results by representing

each weight of the neuron using 5 (See Figure 5.2).

Step 1: We first prune M to create a block-diagonal matrix M′. Specifically, we create M by
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only keep the following non-zero entries:
u1 0 · · · 0

0 u2 · · · 0
...

... . . . ...

0 0 · · · ud

 , where ui ∈ RC log2
1
δ2 .

We choose the binary matrix T to be such that M′ = T⊙M. We also decompose v and s as

s =


s1

s2
...

sd

 , v =


v1

v2

...

vd

 , where si,vi ∈ RC log2
1
δ2 .

Step 2: Consider the event

Ei : [wixi] = [(vi ⊙ si)
Tσ(uixi)].

According to Lemma 5, this event happens with probability

p = 1−O

((
log2

1

δ2

)− 1
7

)
.

The event (E) in Lemma 6 corresponds with the intersection of these events E = ∩d
i=1Ei. By

taking a union bound B EquationB.4, E happens with a probability dp − (d − 1), which is

equal to

1− d O

((
log2

1

δ2

)− 1
7

)
.

The process is illustrated in Figure 5.2. Note that we want > log2(
1
δ2
) samples to be assured

that a RSSP is solved with high probability, but we include that in the constant C.

Lemma 7 (Representing a single layer). Consider a randomly initialized δ2 quantized two layer

neural network of the form g(x) = [Nσ(Mx)] with x ∈ Rd1. Assume δ2 ≤ δ1. Say the precision

of weights of g is reduced to to δ such that δ ≤ δ1. Let ĝ(x) = [(S ⊙ N)Tσ((T ⊙ M)x)] be

the pruned network for a choice of pruning matrices S and T. Let fW(x) = [Wx] be a single
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yx2

x1

x3

yx2

x1

x3

2 log2
(
1
δ

)

Figure 5.2: Representing a single neuron: Figure on the left shows the target network, where as Figure
on the right shows the large network. The colors indicate which part in the target is represented by
which part of the source. For example, the red weight on the left is represented by the red subnetwork
on the right.

layered network of precision δ1. If N has dimension d2 × Cd1 log2
1
δ2

and M has dimension

Cd1 log2
1
δ2

× d1 then with probability

1− d1d2 O

((
log2

1

δ2

)− 1
7

)
,

∀ W ∈ Sd1×d2
δ1

∃ S,T : fW(x) = ĝ(x).

Proof. Assume weights of g are of precision δ. We first prune M to get a block diagonal matrix

M′

M′ =


u1 0 · · · 0

0 u2 · · · 0
...

... . . . ...

0 0 · · · ud1

 , where ui ∈ RC log2
1
δ2 .
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Thus, T is such that M′ = T⊙M. We also decompose N and S as following

S =


sT1,1 · · · sT1,d1

sT2,1 · · · sT2,d1
... . . . ...

sTd2,1 · · · sTd2,d1

 , N =


vT
1,1 · · · vT

1,d1

vT
2,1 · · · vT

2,d1
... . . . ...

vT
d2,1

· · · vT
d2,d1

 , where vi,j, si,j ∈ RC log2
1
δ2 .

Now note that pruning ui and vi,j (using si,j) is equivalent to Lemma 6. Hence it’s simply an

application of Lemma 5 d1d2 times. Hence the event in assumption of Lemma 7 occurs with a

probability d1d2p− (d1d2 − 1), by a union bound B, Equation B.4, which is equal to

1− d1d2 O

((
log2

1

δ2

)− 1
7

)
.

The process is illustrated in Figure 5.3 Note that we want > log2(
1
δ2
) samples to be assured

that a RSSP is solved with high probability, but we include that in the constant C.

Proof of Theorem 6. Now we can see that Theorem 6 can be proved by applying Lemma 7

layer wise, where two layers of the large network represent one layer of the target. Let the total

number of parameters in the target network be Nt, i.e.,

Nt =
l−1∑
i=1

didi+1.

Then the event in assumption of Theorem 6, by union bound B, Equation B.4, occurs with a

probability Ntp− (Nt − 1), where which is equal to

1−Nt O

((
log2

1

δ2

)− 1
7

)
.
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δ

)

Figure 5.3: Representing a Layer: Figure on the left shows the target network, where as Figure on
the right shows the large network. The colors indicate which part in the target is represented by which
part of the source. For example, the red weight on the left is represented by the red weights on the
right.

5.2.2 The Brukholz Construction

In this section, we adapt construction by [Bur22] to prove Theorem 7. The process is illustrated

in Figure 5.4.

Lemma 8. Consider a randomly initialized δ2 quantized two layered neural network g(x) =

Nσ(Mx) with x ∈ Rd1, whose weights are sampled uniformly from {−1, . . . ,−δ, δ, . . . , 1}.

Assume δ2 ≤ δ1. Say the precision of weights of g is reduced to to δ such that δ ≤ δ1. Let

ĝ(x) = [(S⊙N)Tσ((T⊙M)x)] be the pruned network for a choice of pruning matrices S and

T. Let

fW(x) =


[Wx]

[Wx]
...

[Wx]


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is a single layered network, δ1 quantized network where Wx is repeated 2 log2(
1
δ2
) times and

W has dimension d1 × d2. If N has dimension 2d2 log2
1
δ2
×Cd1 log2

1
δ2

and M has dimension

Cd1 log2
1
δ2

× d1 then with probability

1− 2d1d2 log2

(
1

δ2

)
O

((
log2

1

δ2

)− 1
7

)
.

we have

∀ W ∈ Sd1×d2
δ ∃ S,T : fW(x) = ĝ(x).

Proof. Assume weights of g are of precision δ. We first prune M to get a block diagonal matrix

M′

M′ =


u1 0 · · · 0

0 u2 · · · 0
...

... . . . ...

0 0 · · · ud1

 , where ui ∈ RC log2
1
δ .

Thus, T is such that M′ = T⊙M. We also decompose N and S as following

S =


S1

S2

...

S2 log2( 1
δ2
)

 N =


N1

N2

...

N2 log2( 1
δ2
)


where

Sk =


(sT1,1)k · · · (sT1,d1)k

(sT2,1)k · · · (sT2,d1)k
... . . . ...

(sTd2,1)k · · · (sTd2,d1)k

 , N =


(vT

1,1)k · · · (vT
1,d1

)k

(vT
2,1)k · · · (vT

2,d1
)k

... . . . ...

(vT
d2,1

)k · · · (vT
d2,d1

)k

 ,

and (vi,j)k, (si,j)k ∈ RC log2
1
δ2 .

Now note that pruning ui and (vi,j)k (using (si,j)k) is equivalent to Lemma 6. Hence it’s simply

an application of Lemma 5 d1d22 log2
(

1
δ2

)
times. Hence the event in assumption of Lemma 8
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occurs with a probability

1− 2d1d2 log2

(
1

δ2

)
O

((
log2

1

δ2

)− 1
7

)
,

using the union bound B, Equation B.4.

Proof of Theorem 7. Theorem 7 is an application of second step of Lemma 8 for all layers until

we reach the last layer, where copying is not required. The process is illustrated in Figure 5.3.

The event in the assumption of Theorem 7 happens with probability

1−Nt 2 log2

(
1

δ2

)
O

((
log2

1

δ2

)− 1
7

)

x2

x1

x3

y2

y1

y3

x2

x1

x3

y2

y2

y2

y1

y1

y1

y3

y3

y3

2 log2
(
1
δ

)

Figure 5.4: The Figure shows representation of first two layers of a network in Theorem 7. Figure
on the left shows the target network, where as Figure on the right shows the large network. The colors
indicate which part in the target is represented by which part of the source. For example, the red
weight on the left is represented by the red weights on the right.
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Lower Bound by Parameter Counting

Here we prove Theorem 8 which follows by a parameter counting in the discrete setting.

Proof of Theorem 8. Two matrices represent the same function iff all their elements are the

same. Therefore, the number of functions in F is

(
2

δ
+ 1

)d2

.

Also, the number of functions in G is 2α. Now for the assumption of Theorem 8 to hold, we

must have

2α ≥ p

(
2

δ
+ 1

)d2

=⇒ α ≥ log2 p+ d2 log2

(
2

δ
+ 1

)
.

5.3 Future Directions

5.3.1 More on Weight Quantization

The applications of theoretical results on NPP goes well beyond what we have covered in this

thesis. For example, if Theorem 2 can be proved for arbitrary distribution rather than uniform

distribution, then we can get rid of the undetermined constant in Theorem 6 which would

make our bound much better. This requires estimating the moment integrals in Theorem 2 for

different distribution, which is a challenge for future works. Also we conjecture the existence

of a phase transition in SLTH. Given a large network and a target network, there exists a

parameter, which depends on the size and the precision of weights of the large network. The

probability of approximating/representing the target network shows a sharp jump around a

critical value of this parameter in the limit of large networks. Proving this conjecture requires

finding the optimal condition for approximating/representing the target network with a given
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network, which is again a challenge for future works. Finally, one of the criticisms of this work

can be - Why go for exact representation, when one only cares about an ϵ approximation.

Handling approximation in the discrete setting is difficult, but we think can be done using

the analysis of NPP on [BCP01]. We also leave that to future work. Overall, we have shown

that theoretical results on NPP have the potential to serve as extremely powerful tools in the

analysis of SLTH, and it’s a great opportunity for the future works to leverage these results.

5.3.2 The Hopfield Network Version

Hopfield networks are models of associative memory, constructed by John J. Hopfield in early

1980s, for which he received Nobel Prize in Physics in 2024. Hopfield network is simply a fully

connected glassy Ising model (also known as Curie–Weiss Models) with the Hamiltonian

H =
∑
i ̸=j

Jijsisj,

with si ∈ {−1, 1} and Jij = Jji. Note that since all the couplings are different (with possibly

different signs), this system has very complex energy landscape with many degenerate ground

states. The dynamics of this system at a low temperature brings the system into one of the

nearest ground states, where it gets stuck for a long time. A Hopfield network is shown in Figure

5.5. Hopfield asked the following question, given a set of m configurations {ξ(1), ξ(2), . . . , ξ(m)},

1

2

3

4

5

6

Figure 5.5: A Hopfield network

with ξ(k) = {ξ(k)i }Ni=1, where N is the number of spins in the system, can we change Jij’s such

that the configurations {ξ(1), ξ(2), . . . , ξ(m)} become the ground state of the system. He found
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Figure 5.6: Pruning a Hopfield Network

the assignment of the Jij’s which does exactly that:

Jij =
m∑
k=1

ξ
(k)
i ξ

(k)
j .

Hence this is a model of associative memory- the system can remember the states ξk’s, and

recall them when starting from a nearby configuration. We now ask the following question

related to Hopfield networks. Consider two Hopfield networks, one much larger than other, as

shown in Figure 5.6. All the couplings Jij’s of small network and J ′
ij’s of the large network are

randomly initialized. Say smaller one has N nodes, choose any N nodes of the bigger one. Can

the couplings J ′
ij’s of the large network be pruned (set to zero) such that the chosen N nodes

in the bigger network has the same set of ground states as the smaller one? This is basically

the Hopfield version of SLTH question. This question is inspired from the pruning process in

biological neural networks. It has been observed that in biological brains, a lot of connections

are made during the early developmental phase, and then the connections are pruned as the

brain develops further. The question we ask is a Direct model of this process, and we leave it

to future works to tackle this question.
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Conclusion

6.1 Discrete Random Subset Sum Problem

The theoretical analysis of Random Subset Sum problem (RSSP) is an important area in

the field of Computer Science and High dimensional probability. The previous results by

[Lue98] state that RSSP on the set {X1, X2, . . . Xn} where Xi ∼ U [−1, 1] can be solved with

high probability if n > C log
(
1
ϵ

)
, within an error ϵ. This result played a major role in the

previous analysis of Strong Lottery Ticket Hypothesis (SLTH) [Pen+20], [Bur22]. Leveraging

the analysis by [BCP01], we prove results on RSSP in the discrete setting. Consider RSSP

on the set {X1, X2, . . . Xn} where Xi’s are sampled uniformly from {−1, . . . , δ . . . , 1} where

δ << 1. We show that with probability converging to 1 as n → ∞, the RSSP can be solved

exactly if n > C log
(
1
δ

)
. This result plays a major role in our analysis of SLTH in the discrete

setting.

6.2 SLTH and Weight Quantization

Previous results on SLTH dealt with weights of the neural networks sampled from some contin-

uous interval. However, weights in a computer are always represented with finite precision. To

study the effects of quantization, we introduced a quantized formulation of the Strong Lottery

Ticket Hypothesis (SLTH), addressing a more realistic setting where neural network weights

have finite precision. By reducing the problem to the Number Partitioning Problem (NPP)
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and leveraging known phase transition results, we established tight upper bounds on the size

and precision requirements for a randomly initialized network to represent a given target net-

work exactly through pruning. Our analysis basically provides a relationship between precision

of weights and required size of a large network that must hold in order for that network be

prunable to a given target network. Notably, one of our constructions achieves exact size re-

quirements (up to the first layer) without arbitrary undetermined constants, which is new.

This also shows that the theory of Number Partitioning Problem provides powerful tools to

study the theory of SLTH. The asymptotic matching of the forms of upper and lower bounds

suggests the optimality of our approach. Our work highlights the fundamental relationship

between network overparameterization, weight precision, and the existence of sparse, trainable

subnetworks. Future work includes extending these results to more general architectures, re-

laxing precision assumptions, and analyzing approximate representations. Understanding the

trade-offs between quantization, pruning, and expressivity remains a promising direction for

both theory and practical network compression.
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Saddle Point Approximation

In this chapter, we give a short overview of the Saddle Point Approximation. The Saddle

Point Approximation is a powerful tool to get the asymptotic behavior of an Integral which

are dominated by the maxima of the integrand, and is frequently used in Statistical Physics.

Consider an integral of the form

I =

∫ b

a

dx f(x) eng(x), (A.1)

where f and g are real functions and n > 0 and g is bounded. The exponential function

increases very rapidly, so for large n, the major contribution to the integral only comes from

where g(x) is maximum. Say we care about the integral in the n → ∞ limit. The idea is to

approximate the integral by the biggest peak of g. Let x0 be the global maxima of g. Consider

the change of variable

x = x0 +
y√
n
.

If g is analytic, then ng(x) it can be expanded around x0 as

ng(x) = ng(x0) +
1

2
y2g′′(x0) +

y3g′′′(x0)

6
√
n

+O(y4).

Note that g′(x0) = 0 as x0 is a maxima. This is a good approximation of g around its maxima,

and for regions far from maxima does not matter as the contribution to the integral is negligible.

Hence we have

eng(x) = eng(x0)e
1
2
y2g′′(x0)

(
1 +

y3g′′′(x0)

6
√
n

+O(y4)

)
. (A.2)
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We also expand f as

f(x) = f(x0)

(
1 +

yf ′(x0)

f(x0)
√
n
+

y2f ′′(x0)

f(x0)n
+O(y3)

)
. (A.3)

Substituting Equations A.2 and A.3 into Equation A.1 we get

I(n) =
f(x0)e

ng(x0)

√
n

∫ y2

y1

dy ey
2g′′(x0)/2 ·

(
1 +

∞∑
k=1

Pk(y)√
nk

)
,

where Pk(y) are polynomials in y. It can be shown that Pk(y) are odd polynomials if k is odd

and Pk(y) are even polynomials if k is even. Since the integral is completely by it’s maxima,

we can extend the domain to (−∞,∞). Hence we get

I(n) ≈ f(x0)e
ng(x0)

√
n

∫ ∞

−∞
dy ey

2g′′(x0)/2 ·

(
1 +

∞∑
k=1

Pk(y)√
nk

)

=
f(x0)e

ng(x0)

√
n

√
2π

−ng′′(x0)

(
1 +

∞∑
k=1

C2k

nk

)
,

Where C2k’s are some coefficients. Hence one can write

I(n) = f(x0)e
ng(x0)

√
2π

−ng′′(x0)

(
1 +O

(
1

n

))
.
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Inequalities

B.1 Markov’s Inequality

Theorem 9. For a non-negative, integer-valued random variable X we have

P(X > 0) ≤ E[X]. (B.1)

B.2 Cauchy-Schwartz inequality

Theorem 10. If X > 0 is a random variable with finite variance, then

P(X > 0) ≥ (E[X])2

E[X2]
. (B.2)

B.3 Hoeffding’s inequality

Theorem 11. Let X1, X2, . . . , Xn be independent random variables such that ai ≤ Xi ≤ bi

almost surely. Consider the sum of these random variables,

Sn = X1 +X2 + · · ·+Xn.
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Then Hoeffding’s theorem states that, for all t > 0,

P(Sn − E(sn) ≥ t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
(B.3)

P(|Sn − E(sn)| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

B.4 Union Bound

Theorem 12. For any events A1, A2, . . . , An we have

P

(
n⋂

i=1

Ai

)
≥ max

(
0,

n∑
i=1

P(Ai)− (n− 1)

)
. (B.4)
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Rejection Sampling

In this chapter, we describe the Rejection sampling algorithm. It is a simple yet powerful

Monte Carlo technique to draw independent samples from a target probability density f(x),

using samples from an easier “proposal” density g(x). It is extremely useful in cases, where

the known distribution is not normalized. It proceeds in two stages—proposing a candidate,

then accepting or rejecting it—so that the retained points are distributed according to f . We

require a constant M ≥ 1 such that

f(x) ≤ M g(x)

for all x. Equivalently,

M = sup
x

f(x)

g(x)
.

First we discuss the algorithm, and then we go into the mathematical details to understand

how the algorithm works. The algorithm to generate N samples is:

1. Propose x∗ ∼ g(x).

2. Draw u ∼ Uniform(0, 1), independently.

3. Accept x∗ if

u ≤ f(x∗)

M g(x∗)
,

otherwise reject and return to step 1.
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To see why the accepted samples follow f , consider the joint density of (X∗, U):

p(x, u) = g(x)× 1, 0 ≤ u ≤ 1.

The marginal density of accepted x is

paccept(x) =

∫ f(x)/(Mg(x))

0

g(x) du = g(x)
f(x)

M g(x)
=

f(x)

M
.

The total acceptance probability is

P (accept) =

∫
paccept(x) dx =

∫
f(x)

M
dx =

1

M
.

Conditioning on acceptance gives

p(x | accepted) = paccept(x)

P (accept)
= f(x).

Thus each accepted sample is exactly from the target density f . The expected acceptance rate

is

P (accept) =
1

M
,

so efficiency improves as M approaches 1.

A discrete analogue for a target mass function f(i) on i ∈ {1, . . . , K} uses a proposal g(i) and

a constant M ≥ maxi f(i)/g(i). The steps are:

1. Draw i∗ ∼ g.

2. Draw u ∼ Uniform(0, 1).

3. Accept if

u ≤ f(i∗)

M g(i∗)
.

The same argument shows the accepted i∗ follow the distribution f . Rejection sampling is

conceptually simple and provides exact (unbiased) samples from f , but it can be inefficient if

M is large or difficult to bound, especially in high dimensions.
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